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1   Introduction 
The PBAs, AxM[Fe(CN)6]zwH2O (A and M are alkali and transition metals, respectively.), are promising cathode 
materials for LIBs. Imanishi et al.[1,2] reported Li+ 
intercalation behaviors in M[Fe(CN)6]z (M = V, Mn, Fe, Ni, Cu). However, their charge/discharge cyclability is far 
from satisfactory. Cyclability is fairly improved in 
K0.10MnII[FeIII(CN)6]0.704.2H2O and 
Rb0.61MnII[FeIII(CN)6]0.87-2.2H2O.[3] Matsuda and 
Moritomo[4] synthesized a thin film of manganese 
hexacyanoferrate, Li1.32MnII[FeII(CN)6]0.833.5H2O, by 
means of electrochemical deposition. They reported that 
the thin-film electrode exhibits a high capacity of 
128mAh/g and an average operating voltage of 3.6V 
against Li with good cyclability. Kurihara et al.[5] 
improved the capacity of Mn-PBA by increasing the Fe 
concentration (z): the discharge capacity increases from 
115mAh/g at z = 0.83 (Li1.32MnII[FeII(CN)6]0.833.5H2O) to 143mAh/g at z = 0.93 (Li1.72MnII[FeII(CN)6]0.932.3H2O). On the other hand, Takachi et al.[6] reported that the 
Li1.60CoII[FeII(CN)6]0.902.9H2O film electrode exhibits a high capacity of 132mAh/g and an average operating 
voltage of 3.6V against Li with good cyclability. 
The high capacity of Mn-PBA is ascribed to the two 
reduction processes for Mn and Fe,[7] which form two 
well defined plateaus at 3.8V (Mn) and 3.4V (Fe) in the 
discharge curve of LIB. On the other hand, the high 
capacity of Co-PBA is ascribed to two reduction 
processes for Fe and Co,[7] which form two plateaus at 
4.0V (Fe) and 3.2V (Co) in the discharge curve of LIB. 
We note that the order of redox sites is reversed between 
the two systems; Mn�Fe in Mn-PBA and Fe�Co in Co-
PBA. We also emphasize that the redox voltage (VFe) of Fe is markedly increased in Co-PBA (4.0 V) as compared 
with that (3.4 V) in Mn-PBA. In this study, we fabricated 
thin films of mixed PBAs, LixMn1-yCoy[Fe(CN)6]zwH2O, and investigated their electrochemical, structural, and 
electronic properties against x. 
 
2   Experiment 
Thin films of NaxMnII1-yCoIIy[FeII(CN)6]zwH2O were synthesized by electrochemical deposition on an indium–
tin oxide (ITO) transparent electrode under potentiostatic 
conditions at 10.45V vs a standard Ag/AgCl electrode in 
an aqueous solution containing K3[FeIII(CN)6], MnIICl2, CoIICl2, and 5 mol/L NaCl. The deposition time was 5 min. The thickness of the films was 0.5 µm. Before the 
film growth, the surface of the ITO electrode was purified 
by the electrolysis of water for 5 min. The chemical 
composition of the films was determined by inductively 

coupled plasma (ICP) measurement. The magnitudes of x 
and z were determined so as to minimize the sum of the 
squares of the residual error under the charge neutrality 
condition (x + 2 - 4z = 0).  The Li compounds, LixMn1-
yCoy[Fe(CN)6]zwH2O, were obtained by the 
electrochemical substitution of Li+ for Na+. The 
substitutions was performed by charge/discharge cycles 
of the as-grown films in an ethylene carbonate 
(EC)/diethyl carbonate (DEC) solution containing 1 
mol/L LiClO4.  
The Li concentration (x) of the film was controlled by 
the charge/discharge process described above. The 
magnitude of x was calculated from the total current 
under the assumption that Li4z-2M[Fe(CN)6]z is in the discharge state and Li0.00M[Fe(CN)6]z is in the charge state. Except for the high-x region, the film is stable in air. 
The high-x films were carefully and rapidly sealed in a 
glass capillary.  The film was carefully removed from the 
ITO glass substrate with a microspatula, and then fine 
powder was filled into a 300µmφ glass capillary. The 
powder diffraction pattern was detected with an imaging 
plate (IP). The exposure time was 5 min. The X-ray 
wavelength was calibrated using the lattice constant (a = 
5.41112Å) of standard CeO2 powder. Thus-obtained power diffraction patterns were analyzed by the Rietveld 
method (Rietan-FP[8]). 
Ex situ XAS measurements were performed at the 9C 

beamline of the PF, KEK. XAS spectra were measured in 
a fluorescent yield mode with a Lytle detector at 300 K. 
The X-ray was monochromized with a Si(111) double-
crystal monochromator. In the XAS measurement for 
respective elements, e.g., Mn, Co, and Fe, the 
monochromator was calibrated by the K-edge of the 
respective metal foils. The background subtraction, 
normalization, and component decomposition were 
performed with the ATHENA program.[9] The self-
absorption effect is negligible because the penetration 
depths (λ> 40µm) of the compounds at the fluorescence 
and absorption energies of the Mn, Fe, and Co K-edges 
are much larger than the thickness of the films (= 0.5 µm) 
 
3   Results and Discussion 
 

Figure 1(a) shows the XRD patterns of 
LixMn0.89Co0.11[Fe(CN)6]0.893.1H2O (y = 0.11) against x. Except at x =0.00, the XRD patterns can be indexed with 
the fcc setting. The cell parameter a was refined by 
Rietveld analysis with the fcc (Fm3m: Z = 4) model. At x 
= 0.00, doublet features are observed in the (200), (220), 
and (400) reflections. The features indicate a phase 
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separation into two fcc phases. The cell parameter a of the 
respective phase was refined with a two-phase model. 
Similar two-phase features are observed in the low-x 
region at y = 0.22 (not shown). 
 

 Fig. 1 XRD patterns of (a) LixMn0.89Co0.11[Fe(CN)6]0.893.1H2O, 
(b) LixMn0.18Co0.82[Fe(CN)6]0.913.4H2O, and (c) 
LixCo[Fe(CN)6]0.924.6H2O. Values in parentheses represent 
indexes in the fcc setting. The subscript R indicates the 
rhombohedral setting 
 
Figure 1(b) shows the XRD patterns of 
LixMn0.18Co0.82[Fe(CN)6]0.913.4H2O (y = 0.82). All the XRD patterns can be indexed with the fcc setting. The 
cell parameter a was refined with the fcc (Fm3m: Z = 4) 
model. Figure 1(c) shows the XRD patterns of 
LixCo[Fe(CN)6]0.924.6H2O (y = 1.00). Except at x = 1.68, the XRD patterns can be indexed with the fcc setting. The 
cell parameter a was refined with the fcc (Fm3m: Z = 4) 
model. At x = 1.68, a doublet feature is observed at 11°, 
indicating a rhombohedral distortion. The cell parameters 
a and c at x = 1.68 were refined with the rhombohedral 
(R3m: Z = 4) model. 

  
Fig. 2. XAS of LixMn0.89Co0.11[Fe(CN)6]0.893.1H2O against x 
around the (a) Mn K-, (b) Co K-, and (c) Fe K-edges. The 
broken vertical lines in (c) represent the peak energies of Fe2+ 
and Fe3+.  
 
Figure 2(a) shows the XAS spectra of 
LixMn0.89Co0.11[Fe(CN)6]0.893.1H2O (y = 0.11) against x around the Mn Kedge. The spectra show negligible 
changes with x, indicating that the Mn valence essentially 
remains 2+. Figure 2(b) shows the XAS spectra of the 
films against x around the Co K-edge. The XAS spectrum 

at x = 0.0 nearly coincides with that of low-spin (LS) 
Co3+, while the spectrum at 1.56 coincides with that of 
HS Co2+.The systematic spectral change in Fig. 2(b) 
indicates that the average Co valence changes from 3+ to 
2+ with an increase in x. Figure 6(c) shows the XAS 
spectra of the films against x around the Fe K-edge. The 
broken vertical lines represent the peak energies of Fe2+ 
and Fe3+. The red shift of the peak indicates that the 
average Fe valence changes from 3+ to 2+ with an 
increase in x. 

 Fig. 3. X-ray absorption spectra of 
LixMn0.18Co0.82[Fe(CN)6]0.913.4H2O against x around the (a) Mn 
K-, (b) Co K-, and (c) Fe K-edges. The broken vertical lines in 
(c) represent the peak energies of Fe2+ and Fe3+. 
 
Figure 3(a) shows the XAS spectra of 
LixMn0.18Co0.82[Fe(CN)6]0.913.4H2O (y = 0.82) against x around the Mn K-edge. The XAS spectrum at x = 0.0 is 
due to Mn3+, while the spectrum at 1.64 is due to Mn2+. 
The spectral change in Fig. 3(a) indicates that the average 
Mn valence changes from 3+ to 2+ with an increase in x. 
Figure 3(b) shows the XAS spectra of the films against x 
around the Co K-edge. The spectral change indicates that 
the average Co valence changes from 3+ to 2+ with an 
increase in x. Figure 3(c) shows the XAS spectra of the 
films against x around the Fe K-edge. The red shift of the 
peak indicates that the average Fe valence changes from 
3+ to 2+ with an increase in x. 

 Fig. 4. X-ray absorption spectra of 
LixCo[Fe(CN)6]0.924.6H2O against x around the (a) Co K- and 
(b) Fe Kedges. The broken vertical lines in (b) represent the 
peak energies of Fe2+ and Fe3+. 
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Figure 4(a) shows the XAS spectra of 
LixCo[Fe(CN)6]0.924.6H2O (y = 1.00) against x around the Co K-edge. The spectral change indicates that the average 
Co valence changes from 3+ to 2+ with increase in x. 
Figure 4(b) shows the XAS spectra of the films against x 
around the Fe K-edge. The red shift of the peak indicates 
that the average Fe valence changes from 3+ to 2+ with 
an increase in x. 
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