Chiral smectic transition phases appearing near the electric field-induced phase transition observed by resonant micro-beam X-ray scattering (2)

Atsuo Iida1 and Yoichi Takanishi2

1Photon Factory, Institute of Material Structure Science, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
2Kyoto University, Kitashirakawaiwake-cho, Sakyoku, Kyoto 606-8502, Japan

1 Introduction

Liquid crystals show rich structures and complex phase transitions due to the temperature change. Among them, chiral smectic C liquid crystals are characterized by a one-dimensional layer structure and an average molecular orientation tilted from the layer normal. The general sequence of the sub-phases in the chiral smectic C phase is SmC* (synclinic), SmC\textsubscript{A}* (two-layer periodicity). SmC\textsubscript{A}* (three-layer periodicity) and SmC\textsubscript{D}* (four-layer periodicity) phases as the temperature is decreased. Recently new phases other than three or four layer periodicity were reported [1][2]. Since an electric field also induces sub-phases, it is important to investigate electric field induced phase transition to study the origin of these sub-phases [3]. In our previous resonant X-ray scattering (RXS) measurement [4], a new electric field induced transition phase having a very long periodicity of twelve-layer was found in a novel Br-contained liquid crystal. In this paper, a Se-contained liquid crystal, widely used for the RXS measurement, was investigated near the electric-field induced phase transition.

2 Experiment

The Se contained liquid crystal used was AS657 [5] and is sandwiched between 80 \textmu m thick glass plates coated with indium tin oxide as an electrode. The phase sequence of the material is Iso 95.8\textdegree C SmA 88.2\textdegree C SmC* 86.3\textdegree C SmC\textsubscript{A}* (qT=1/2) 83.6\textdegree C SmC\textsubscript{A}* (qT=1/3) 82.6\textdegree C SmC\textsubscript{A}* (qT=0). The applied electric field was a square wave form with 100Hz.

RXS experiments were performed on the beam line 4A using a KB focusing system. The incident energy was set at the absorption edge of Se (12.65 keV) and the beam size was less than 5 x 5 \textmu m2. A pixel array detector (Pilatus-100K, DECTRIS) located at 80 cm from the sample (focusing point) was used for the measurement.

3 Results and Discussion

Figure.1 sows the intensity distributions along the layer normal for various applied field at 80.1\textdegree C as a function of the normalized scattering vector obtained from the 2D diffraction pattern. Below 30V, the RXS diffraction pattern shows the SmC\textsubscript{A}* phase (fig.1(a)). At 30V, the SmC\textsubscript{A}* phase appears (fig.1(b)) and it lasts until 80.0 V. No transition phase was observed at 30V. Above 80.2V, the 1/3 order peak shifts to the low q value and becomes broad while a new peak appears as shown in fig.(d) which indicates the new 6 layer periodicity. At higher applied voltages, the peak intensity decreases (fig.1(e)) and then only the streak is observable (fig.1(f)). After the ferroelectric (SmC*) transition, RXS disappears. In this sample, in contrast to the Br-contained liquid crystal [4], no twelve-layer periodicity phase appeared near the phase boundary between the SmC* and SmC\textsubscript{A}*. The phase sequences at other temperature are now under investigation.

References

* atsuo.ida@kek.jp

Fig.1 RXS intensity distributions along the layer normal. A dotted line in fig (f) shows the diffraction pattern from the ferroelectric phase at 86V. Missing data q/q\textsubscript{o} = 0 through 0.18 are due to the shadow of a direct beam stopper.