PTRF-XAFS Study of Size-Selected Pt₇ Cluster Uniformly Deposited on an Al₂O₃/NiAl(110) Substrate by Lissajour Scanning

 Yusaku F. Nishimura¹, Atsushi Beniya¹, Ryo Suzuki¹, Kiyotaka Asakura², Satoru Takakusagi², and Yoshihide Watanabe^{1,*}
¹Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
²Hokkaido University, Sapporo, Hokkaido 001-0021, Japan

1 Introduction

Size-selected noble metal clusters are expected to improve catalytic activities and thus to reduce the use of noble metals, especially for automotive catalysts. So far, we have developed size-selected cluster-producing and characterizing system to clarify the relationships between the number of constitutive metal atoms and chemical properties [1]. Electronic states of Pt_n clusters on Al_2O_3 as well as on TiO₂ are, however, still unclear. In this study, we performed polarization-dependent total reflection fluorescence XAFS (PTRF-XAFS) [2] to evaluate the electronic state of a Pt_7 cluster on an Al_2O_3 layer formed on NiAl(110).

2 Experiment

 6.4×10^{12} cm⁻² of Pt₇ clusters were deposited on an Al₂O₃ layer formed on NiAl(110) single crystal in the manner described in Ref. [1]. The Pt₇/Al₂O₃/NiAl(110) sample was transferred and supplied in vacuum to the PTRF-XAFS measurement system by using a portable ultrahigh-vacuum sample storage system [3]. PTRF-XAFS measurements were performed at BL-9A employing the PTRF-XAFS chamber (base pressure: 8 × 10⁻⁸ Pa) under the following three orientation conditions: the electric vector *E* // [110], *E* // [001], and *E* // [110]. The measured spectra were normalized using REX2000.

3 Results and Discussion

Figure 1 describes polarization dependence of a Pt L_3 edge XANES spectrum for the Pt₇/Al₂O₃/NiAl(110). For comparison, a Pt L3-edge XANES spectrum for Pt foil, which was measured under the same condition as the Pt7/Al2O3/NiAl(110), is displayed in Fig. 1 as well. There are three features regarding the $Pt_7/Al_2O_3/NiAl(110)$. The first point is that the Pt L_3 -edge white line for the Pt₇/Al₂O₃/NiAl(110) emerges at a higher energy than that for Pt foil does. This change, which is assigned to the shift of unoccupied 5d orbital of Pt to a higher energy, may be caused by nanometrization of Pt or by electronic interaction with O atoms at the surface of the Al₂O₃ support. The second point is that the integral intensity of the white line for each orientation condition of the Pt₇/Al₂O₃/NiAl(110) is high, compared to that for Pt foil. This fact means that Pt atoms in the Pt₇ cluster are slightly oxidized on average probably through electron transfer from the Pt₇ cluster to adjacent O atoms at the surface of the Al₂O₃ layer. The third point concerning polarization dependence is that the integral intensity of the white line and the amplitude of EXAFS oscillation are higher for the condition of E // [110] than for the other orientations. The effective coordination number N^* is represented as functions of the angles θ_{jk} between polarization vector E and bond vectors \mathbf{R}_{jk} [2].

$$N_j^* = \sum_k \left(0.7 + 0.9 \cos^2 \theta_{jk}\right)$$

This relation invokes an image of relatively planar Pt_7 geometry on the Al_2O_3 , parallel to NiAl(110). Such an image is consistent with the result of our previous scanning tunneling microscopy study [1].

In conclusion, the PTRF-XAFS study suggests that the Pt₇ cluster on the Al₂O₃ should have a planar structure parallel to NiAl(110). The interaction between the Pt₇ cluster and the Al₂O₃ layer formed on NiAl(110) seems to be large, which may cause the shift in the Pt L_3 -edge white line and electron transfer from Pt atoms to adjacent O atoms. The effect of oxide support on electronic and geometric structures of Pt atoms in the Pt₇ cluster will be further discussed in the future.

Fig. 1: Pt L_3 -edge XANES spectra of Pt₇ clusters on Al₂O₃ formed on NiAl(110) substrate.

Acknowledgement

Part of this study was financially supported by Grantin-Aid for Scientific Research on Innovative Areas "Nano Informatics" (grant number 25106010) from JSPS.

References

- [1] A. Beniya et al., Phys. Chem. Chem. Phys. 16, 26485(2014).
- [2] K. Asakura et al., J. Phys. Chem. B 101, 5549 (1997).
- [3] Y. Watanabe *et al.*, J. Vac. Sci. Technol. A 34, 023201 (2016).

* ywatanabe@mosk.tytlabs.co.jp