BL-16A/2013S2-004

Transverse XMCD 法により観測した La_{1-x}Sr_xMnO₃薄膜における スピン密度分布の異方性

Anisotropic spin-density distribution in La_{1-x}Sr_xMnO₃ thin films probed by transverse XMCD

芝田悟朗^{1,*},北村未歩²,簔原誠人²,坂本祥哉¹,野中洋亮¹,池田啓祐¹,池震棟¹, 組頭広志²,藤森淳¹

1東京大学大学院理学系研究科物理学専攻,〒113-0033 東京都文京区本郷 7-3-1

2放射光科学研究施設,〒305-0801 茨城県つくば市大穂 1-1

Goro Shibata^{1,*}, Miho Kitamura², Makoto Minohara², Shoya Sakamoto¹, Yosuke Nonaka¹, Keisuke Ikeda¹, Zhendong Chi¹, Hiroshi Kumigashira², and Atsushi Fujimori¹

¹Deptartment of physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan ²Photon Factory, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

1 <u>はじめに</u>

ペロブスカイト型マンガン酸化物 La_{1-x}Sr_xMnO₃ (LSMO)は、巨大磁気抵抗やハーフメタル性といっ た興味深い物性を示すことから盛んに研究が行われ てきた。Sr ドープ量や、温度・磁場などの様々な外 部パラメータを制御することによって、金属-絶縁 体転移や磁気構造の変化など、多彩な転移を引き起 こすことができることが知られている。さらに、 LSMO 薄膜では、その電気的・磁気的性質は基板圧 力によっても大きく左右され、バルクと異なる物性 が現れることが示されている[1,2]。すなわち、強磁 性金属状態にある LSMO 薄膜をより格子定数の大き い SrTiO₃ (STO)基板の上に堆積させて伸張性応力加 えると A 型反強磁性金属相が安定化し、逆により格 子定数の小さい LaAlO₃ (LAO)基板上に堆積させると 圧縮性応力により C型反強磁性絶縁体相が安定化す る[1]。また、LSMO 薄膜の磁気異方性については、 STO 基板の場合には面内磁化容易、LAO 基板の場合 には面直磁化容易になることが知られている[2]。第 一原理計算によると、STO 基板の場合には x^2-y^2 軌道、 LAO 基板の場合には 3z²-r² 軌道が選択的に占有され ることが示されており[1]、マクロな物性とミクロな 電子状態との間の密接な関係性が示唆される。

このような軌道分極の様子を探る手法の一つとし て、X線直線二色性 (XLD) が用いられてきた。しか しLSMO薄膜の場合、O1s吸収端で見た場合には確 かに STO 基板の場合に x²-y²軌道が、LAO 基板の場 合には 3z²-r²軌道が優先的に占有されることが示さ れているのに対し[3]、Mn 吸収端で見た場合にはど ちらの基板の場合にも 3z²-r² 的になることが示され ており、一見矛盾する結果が得られている[4,5]。後 者に関しては、最表面 Mn 原子層のみ空間反転対称 性が破れていることが一因として指摘されており [4,5]、Mn 酸化物における軌道状態の理解は単純で はないことが分かっている。 一方、X線磁気円二色性 (XMCD) から求めたスピン磁気モーメントにも、「磁気双極子項」 M_T と呼ばれる、軌道分極の大きさに比例する項が表れることが理論的に示されている[6,7]。XLD と異なり、この項は全電子ではなくスピン分極した電子のみの軌道分極、すなわちスピン密度分布 (例えば $x^2 - y^2$ 的、 $3z^2 - r^2$ 的など)を表しており、磁性に直接関与する電子の状態を見ていると考えられる。 M_T およびスピン磁気モーメント M_{spin} の角度依存性については理論的に求められており[7,8]、XMCD の磁場方向依存性を調べることでそれらを分離することが可能になる。また特に、 M_{spin} が光軸と垂直になるようなXMCD 配置 (Transverse XMCD, TXMCD) で測定を行えば、 M_T 項だけを検出することができる。

このような実験を行うためには、光の入射方向に 対して様々な方向に外部磁場を印加できるようにす る必要がある。本記事では、我々が近年開発したベ クトルマグネット XMCD 実験装置[9,10]を用いて LSMO 薄膜の角度依存 XMCD および Transverse XMCDの実験を行った結果を示す。過去に、STO 基 板上 LSMO 薄膜の角度依存 XMCD の実験結果につ いて報告しているが[11]、本稿では LAO 基板上 LSMO 薄膜の実験結果を示し、基板応力と Mn のス ピン密度分布との関係性に関して考察を行う。

2 <u>実験</u>

膜厚 100 分子層 (ML)の LSMO (*x*=0.3) 薄膜を LaAlO₃ (001)基板上に Laser molecular beam epitaxy 法 [12] により堆積させた。蒸着時の基板温度は650℃、 酸素分圧は1.0×10⁻⁴ Torr、レーザー出力は60 mJ と した。堆積後、酸素欠損をなくすために基板温度 400℃、酸素分圧 1 気圧下でポストアニールを行っ た。X 線回折測定から求めた面直方向の格子定数は 0.400 nm で、バルクでの格子定数 (0.389 nm)に比べ て増加しており、圧縮性の基板応力が掛かっている ことを確認した。

図 1: 角度依存 XMCD 実験のセットアップ。

XMCD 測定は Photon Factory のビームライン BL-16Aにおいて、ベクトルマグネット XMCD 実験装置 [9,10,11]を用いて行った。本装置では、光軸と平行 および垂直方向に設置した 2 軸の超伝導マグネット を用いることにより、様々な方向に磁場を印加する ことが可能である。実験のセットアップの模式図を 図1に示す。試料角度をX線の入射方向(以後この 方向の単位ベクトルを \hat{P} と書く)から45°に固定し、 磁場方向のみを変えながら測定を行った。磁場 Hお よびスピン磁化 M_{spin} の角度 θ_H および θ_M はともに試 料面直方向を0°と定義している。測定温度は 30 K、 測定に用いた磁場の大きさは0.5Tであった。測定は 全電子収量法によって行った。

3 結果および考察

図2に、様々な方向に磁場を印加した際の Mn L_{2,3} 端 XMCD スペクトル、およびそこから XMCD 総和 則[6]を用いて求めた有効スピン磁気モーメント $M_{spin}^{eff} = M_{spin} + (7/2)M_T$ の光軸方向成分 $\hat{P} \cdot M_{spin}^{eff}$ を示す。図2(a)の XMCD 強度の変化は、磁場方向の回 転とともに磁気モーメントの方向も回転している様 子を表している。ここで、磁気異方性があるために、 M_{spin} の方向 θ_M は一般に磁場方向 θ_H とは異なること に注意する必要がある。仮にこれらが平行であると すると、 $\hat{P} \cdot M_{spin}^{eff}$ の磁場方向依存性は図2(b)の黒い 破線に示すような正弦曲線になるはずであるが、実 験データはこの曲線からのずれが見られ、磁気異方 性が存在することが分かる。

外部磁場の大きさ *H* と方向*θ*_{*H*}を決めたときの磁化 方向は、静磁エネルギー密度

 $E = -\mu_0 M_{\rm sat} H \cos(\theta_M - \theta_H)$

 $+(\mu_0/2)M_{\text{sat}}^2\sin^2\theta_M - K_u\sin^2\theta_M \qquad (1)$

を最小化するような θ_M として求まる。ここで M_{sat} は 飽和磁化、 K_u は結晶磁気異方性エネルギーで、各項 はそれぞれ外部磁場のエネルギー・反磁場によるエ ネルギー(形状磁気異方性)・結晶磁気異方性エネ ルギーを表す。形状磁気異方性の効果のみを取り入 れて θ_H 依存性を求めると図 2(b)の緑実線のようにな り、実験結果を再現しない。一方、 M_{sat} と K_u をフィ ッティングパラメータとして、実験の θ_H 依存性を再 現するようにパラメータの値を決めると青実線のよ

図 2: LaAlO₃ 基板上 La_{0.7}Sr_{0.3}MnO₃ 薄膜の角度依存 XMCD。(a) 各磁場方向 θ_H に対する XMCD スペク トル, (b) スピン総和則[6]から求めた有効スピン 磁気モーメント M_{spin}^{eff} の光軸方向成分 $\hat{P} \cdot M_{spin}^{eff}$ 。 黒破線:磁気異方性がない場合。緑線:形状磁 気異方性 (SA)のみ取り入れた場合。青線:SA と 結晶磁気異方性 (MCA)を取り入れた場合。紫 線:SA, MCA に加えてスピン分布の異方性 M_T の 項を取り入れた場合。

うになり、実験に近い結果が得られる。このときの フィッティングパラメータの値は表 1 のとおりであ る。今回測定した LAO 基板上の LSMO 薄膜では $K_u > 0$ となっており、面直方向が磁化容易軸になっ ていることが分かる。一方、以前測定した STO 基板 上 LSMO 薄膜では面内磁化容易となっている[11]。 これらの傾向は、SQUID 磁束計による先行研究での 測定結果と一致している[2]。さらに、理論的に求め た磁気双極子項 M_T の角度依存性[8]の効果まで取り 入れると紫実線のようになり、さらに実験に近い結 果を与える(パラメータ値を表 1 に示す)。

このフィット結果から、スピン磁化が光と垂直に なる角度、すなわち TXMCD の配置が実現される角 度 θ_H を推定することができる。図 3 の青線は、その ような θ_H 、すなわち $\theta_H = -50$ °における LSMO/LAO 薄膜の XMCD スペクトルである。スペクトル形状は 通常の XMCD 配置のもの (Longitudinal XMCD) とは 明確に異なっている。さらに、同図中に赤線で示し

表 1: 図 2 のフィット曲線に用いたパラメータ。 $Q_{zz} = (1 - 3\hat{z}^2)$ は電気四重極子モーメントの一成分 の期待値で、 M_T はこれに比例する[7,8]。 $x^2 - y^2$ 軌 道, $3z^2 - r^2$ 軌道が完全に占有されている場合、それ ぞれ(7/2) $Q_{zz} = -2.+2$ となる[7,8]。

$(72)Q_{ZZ} = 2, 72 \subset 3 \odot [7,0]_{0}$			
	$M_{\rm sat} (\mu_{\rm B}/{\rm Mn})$	K_u (kJ/m ³)	$(7/2)Q_{zz}$
SA+MCA	1.20 ± 0.01	40 ± 4	
SA+MCA + Q_{zz}	1.20 ± 0.01	30 ± 7	0.13 ± 0.03

た STO 基板の場合の TXMCD スペクトル[11,15]と符 号が逆でほぼ同一形状のスペクトルになっている。 これは、磁気双極子項 $M_{\rm T}$ の符号の違い、すなわち 基板応力によるスピン密度分布の違いを反映してい ると考えられる。

図 3 の破線は、Mn³⁺O₆クラスターモデルを用いて 計算した TXMCD スペクトルのシミュレーション結 果である。クラスターは D_{4h} 対称性を仮定し、立方 晶の結晶場分裂 10Dq に加えて、eg 軌道内・t_{2g} 軌道 内の結晶場分裂を表すパラメータCp[13]を導入して いる (Cp > 0の場合x² - y²軌道が、Cp < 0の場合 $3z^2 - r^2$ 軌道がより安定になる)。計算結果は実験 の XMCD スペクトル形状を概ね再現しており、これ が TXMCD の信号であることを支持している。さら に、LAO および STO 基板の場合の実験的な TXMCD スペクトルの符号は、それぞれCp > 0 (x² - y²的) およびCp < 0 (3z² - r²的)とした場合の計算結果と 一致しており、基板圧力から期待される結果とコン システントになっている。

以上のように、TXMCD から推定された LSMO 薄 膜のスピン密度分布は、STO基板とLAO基板の場合 とでそれぞれ $x^2 - y^2$ 的、 $3z^2 - r^2$ 的であることが分 かった。これは、どちらの基板の場合も3z² - r²的 であるとした XLD の結果[4,5]とは異なっている。こ の相違の原因についてはまだ確実な証拠が得られて いないが、TXMCD ではスピン分極した電子の軌道 状態、XLD では全電子の軌道状態を見ているため、 この違いが関係している可能性がある。先行研究に よると、伸張性の STO 基板の場合でも $3z^2 - r^2$ 軌道 が安定化するのは表面における空間反転対称性の破 れによるとされているが[4,5]、今回の実験結果によ ればスピン分極した電子はx² - y²的な分布をしてい るから、再表面の $3z^2 - r^2$ 的な電子は磁性に関与し ていない可能性がある。特に、LSMO 薄膜の表面・ 界面近傍では強磁性が弱まっている層 (Dead layer) の存在が報告されており[14]、これとの関係性も示 唆される。

4 <u>まとめ</u>

本研究では、LAO 基板上に作製し圧縮性応力を加 えた LSMO 薄膜に対し角度依存 XMCD および TXMCD の実験を行った。XMCD の磁場方向依存性 から求めた結晶磁気異方性定数は正となり、面直磁 化容易となることを確かめた。得られた磁場方向依

図 3: Transverse XMCD スペクトル。実線: LaAlO₃ 基板上 La_{0.7}Sr_{0.3}MnO₃ 薄膜(青) および SrTiO₃ 基板上 La_{0.6}Sr_{0.4}MnO₃ 薄膜[11](赤) に対 する実験結果。破線: D_{4h} 対称性下Mn³⁺O₆クラス ターモデルにより計算したスペクトル。10Dq (t_{2g} -eg 間の結晶場分裂) = 1.5 eV、 8Cp ($x^2 - y^2$ -3 $z^2 - r^2$ 間の結晶場分裂) = +0.08 eV (赤、 $x^2 - y^2$)) および-0.08 eV (青、3 $z^2 - r^2$ 的)の場合 を示している。

存性を基に TXMCD の配置で実験を行い、スピン分 布異方性を反映した TXMCD スペクトルを得ること に成功した。スピン分布の異方性はLAO基板試料の 場合には $3z^2 - r^2$ 的となることが示され、STO 基板 の場合と逆の傾向が得られた。この傾向は、基板圧 力から期待される結果と一致している。

参考文献

- [1] Y. Konishi et al., J. Phys. Soc. Jpn. 68, 3790 (1999).
- [2] F. Tsui et al., Appl. Phys. Lett. 76, 2421 (2000).
- [3] C. Aruta et al., Phys. Rev. B 73, 235121 (2006).
- [4] A. Tebano et al., Phys. Rev. Lett. 100, 137401 (2008).
- [5] D. Pesquera et al., Nature commun. 3, 1189 (2012).
- [6] P. Carra et al., Phys. Rev. Lett. 70, 694 (1993).
- [7] J. Stöhr and H. König, Phys. Rev. Lett. 75, 3748 (1995).
- [8] H. A. Dürr and G. van der Laan, *Phys. Rev. B* 54, R760 (1996).
- [9] M. Furuse *et al.*, *IEEE Trans. Appl. Supercond.* 23, 4100704 (2013).
- [10] 藤平 潤一ほか, 低温工学 485号, 233 (2013).
- [11] G. Shibata *et al.*, *Photon Factory Activity Report 2012 B*, **30** (2013).
- [12] K. Horiba et al., Rev. Sci. Instrum. 74, 3406 (2003).
- [13] G. van der Laan et al., Phys. Rev. Lett. 105, 067405 (2010).
- [14] K. Yoshimatsu et al., Appl. Phys. Lett. 94, 071901 (2009).
- [15] ここでは、文献[11]にある $\theta_{H} = 65^{\circ}$ のスペクトル を TXMCD として引用している。角度の定義が 本稿とは異なっており、本稿の角度の定義に変 換すると $\theta_{H} = -20^{\circ}$ となる。
- * <u>shibata@wyvern.phys.s.u-tokyo.ac.jp</u>