Observation of spin structure in CrNb₃S₆ by means of resonant soft x-ray scattering

Takashi Honda^{1,*}, Yuichi Yamasaki^{2,3}, Hironori Nakao¹, Yuichi Murakami¹, Takahiro Ogura⁴, Yusuke Kousaka^{5,6}, and Jun Akimitsu⁷

¹CMRC and PF, Institute of Materials Structure Science, KEK, Tsukuba 305-0801, Japan

²Department of Applied Physics and QPEC, University of Tokyo, Tokyo 113-8656, Japan

³RIKEN CEMS, Wako 351-0198, Japan

⁴Department of Physics and Mathematics, Aoyama-Gakuin University, Kanagawa 252-5258, Japan.

⁵Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan

⁶Center for Chiral Science, Hiroshima, 739-8526, Japan

⁷Faculty of Science, Okayama University, Okayama 700-8530, Japan

We clarified a formation of chiral magnetic soliton lattice in mono-axial chiral magnet $CrNb_3S_6$ as seen via small-angle resonant soft x-ray scattering (RSXS) near the Cr *L*-absorption edge. In our results, the magnetic-field dependence of the higher harmonic magnetic diffraction and that of chiral magnetic soliton lattice constant are found to agree well with a theoretical magnetic structure predicted based on the chiral XY-spin model. We also observe deformations of the spin structure from the predicted chiral magnetic soliton lattice near the critical temperature.

1 Introduction

 $CrNb_3S_6$ is one of the chiral magnets, and forms chiral soliton lattice (CSL) by applying small magnetic fields perpendicular magnetic modulation vector along *c*-axis. It has been investigated by theory and by magnetic, electric transport properties measurements on single crystals.[1,2] In order to study the magnetic-field dependence of the magnetic structure for the CSL in more detail, we performed a small-angle RSXS.

2 Experiment

A single crystal of CrNb₃S₆ with a volume of ~0.01 mm³ was grown by the chemical vapor transport method.[3] A thin plate with a thickness of ~120 nm for small-angle RSXS observation was prepared by the focused ion beam (FIB) thinning method (SMI3200; Seiko Instruments Inc., Japan). The sample was affixed with carbon contacts on a Si substrate with a square hole of 10 × 10 μ m². Small-angle RSXS measurements were carried out at BL-16A. An in-vacuum CCD camera (2024 × 2024 pixels, Roper Industrial Inc.), positioned downstream of the sample, was used to record the RSXS intensity.

3 <u>Results and Discussion</u>

Figure 1(a) shows the experimental setup for the transmitted small-angle RSXS measurements. Figure 1(b) displays the CCD image measured at 195 mT with the circularly polarized soft x-ray of 577 eV at 80 K. An application of magnetic fields induces higher harmonic magnetic peaks. Finally, 7 spots are discerned with $q = \pm 0.052, \pm 0.107, \pm 0.154$ and 0.207 nm⁻¹ at 195 mT [see Figs. 1(b,c)]. Magnetic-field dependence of q is consistent with a predicted theoretical curve based on the chiral XY-spin model including the correction of the demagnetizing field, which strongly depend on the shape of the specimen and is proportion to the magnetization. Near the critical temperature ($T_{\rm C} \sim 119.6$ K), the

dependence deviates from the theoretical curve with the correction. Additionally, according to the temperature dependence of FWHM of q, the magnetic correlation of helix becomes short-range order (SRO) above $T_{\rm C}$. We are able to define two kinds of phases; Helix $< T_{\rm C} \sim 119.6$ K < SRO helix $< T_{SRO} \sim 121.6$ K. In the SRO phase, it indicates that FM order and short-range modulation due to DM interaction emerges.

Fig. 1: (a) A transmission-type setup for small-angle RSXS. (b,c) CCD images of small-angle RSXS, and the profiles of it for CSL phase, respectively.

References

- [1] I. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964).
- [2] Y. Togawa et al., Phys. Rev. Lett. 108, 107202 (2012).
- [3] T. Miyadai et al., J. Phys. Soc. Jpn. 52, 1394 (1983).
- * takhonda@post.kek.jp