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Observation of spin structure in CrNb3S6 by means of resonant soft x-ray scattering 
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We clarified a formation of chiral magnetic soliton lattice in mono-axial chiral magnet CrNb3S6 as seen via small-angle 

resonant soft x-ray scattering (RSXS) near the Cr L-absorption edge. In our results, the magnetic-field dependence of the 

higher harmonic magnetic diffraction and that of chiral magnetic soliton lattice constant are found to agree well with a 

theoretical magnetic structure predicted based on the chiral XY-spin model. We also observe deformations of the spin 

structure from the predicted chiral magnetic soliton lattice near the critical temperature. 

 
1   Introduction 

CrNb3S6 is one of the chiral magnets, and forms chiral 

soliton lattice (CSL) by applying small magnetic fields 

perpendicular magnetic modulation vector along c-axis. It 

has been investigated by theory and by magnetic, electric 

transport properties measurements on single crystals.[1,2] 

In order to study the magnetic-field dependence of the 

magnetic structure for the CSL in more detail, we 

performed a small-angle RSXS. 

 

2   Experiment 

A single crystal of CrNb3S6 with a volume of ∼0.01 

mm
3
 was grown by the chemical vapor transport 

method.[3] A thin plate with a thickness of ∼120 nm for 

small-angle RSXS observation was prepared by the 

focused ion beam (FIB) thinning method (SMI3200; 

Seiko Instruments Inc., Japan). The sample was affixed 

with carbon contacts on a Si substrate with a square hole 

of 10 × 10 μm
2
. Small-angle RSXS measurements were 

carried out at BL-16A. An in-vacuum CCD camera (2024 

× 2024 pixels, Roper Industrial Inc.), positioned 

downstream of the sample, was used to record the RSXS 

intensity. 

 

3   Results and Discussion 

Figure 1(a) shows the experimental setup for the 

transmitted small-angle RSXS measurements. Figure 1(b) 

displays the CCD image measured at 195 mT with the 

circularly polarized soft x-ray of 577 eV at 80 K. An 

application of magnetic fields induces higher harmonic 

magnetic peaks. Finally, 7 spots are discerned with q = 

±0.052, ±0.107, ±0.154 and 0.207 nm
−1

 at 195 mT [see 

Figs. 1(b,c)]. Magnetic-field dependence of q is 

consistent with a predicted theoretical curve based on the 

chiral XY-spin model including the correction of the 

demagnetizing field, which strongly depend on the shape 

of the specimen and is proportion to the magnetization. 

Near the critical temperature (TC ~119.6 K), the 

dependence deviates from the theoretical curve with the 

correction. Additionally, according to the temperature 

dependence of FWHM of q, the magnetic correlation of 

helix becomes short-range order (SRO) above TC. We are 

able to define two kinds of phases; Helix < TC ~119.6 K < 

SRO helix < TSRO ~121.6 K. In the SRO phase, it 

indicates that FM order and short-range modulation due 

to DM interaction emerges. 

 

 

 
Fig. 1: (a) A transmission-type setup for small-angle 

RSXS. (b,c) CCD images of small-angle RSXS, and the 

profiles of it for CSL phase, respectively.  
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