Local Structure around Zr Species in SiO₂ Doped with Zr

Yuki Kato^{1,*} and Shigeru Sugiyama^{2,*}

¹MMA Group, Otake R&D Center, Mitsubishi Chemical Co., 20-1 Miyuki-cho, Otake-shi,

Hiroshima, 739-0693, Japan

²Department of Applied Chemistry, Graduate School of Technology, Industrial and Science, Tokushima University, Minamijosanjima, Tokushima, 770-8506, Japan

1 Introduction

Acidic catalysts are widely used for petroleum refinery and organic synthesis of bulk and fine chemicals [1,2]. This study was made to find out correlation between the state of dispersing or aggregating and acidity on complex oxide (SiO₂-XO_a) doped other metal oxide (XO_a) in SiO₂. We have found out that SiO₂-ZrO₂ have good acidity, which changed by preparation methods and amount of doped zirconium. In the present report, zirconia supported on SiO₂ will be examined using XAFS in order to understand the local structure around zirconium.

2 Experiment

 SiO_2 - ZrO_2 were prepared via an impregnation method using aqueous zirconium nitrate and SiO_2 . In the present study, two atomic ratios of Zr/Si (0.004 and 0.007) in SiO_2 - ZrO_2 are employed for XAFS analysis. As reference samples, monoclinic ZrO_2 and perovskite-type $SiZrO_3$ were used.

Analysis of XAFS near Zr-K edge was carried out at the High Energy Accelerator Research Organization With a storage ruing current of 400 mA (6.5 GeV). The X-rays were nonochromatized with Si(311) at an NW10A station. The absorption spectra were observed using ionization chambers in the transmission mode. The photon energy was scanned in the range of 17,498.90-19,098.90 for the Zr-K edge.

The average coordination number was estimated from the comparison of XANES spectra of these two samples and pattern-fitting analysis of EXAFS of both samples referring the data for ZrO_2 and $SiZrO_3$.

3 Results and Discussion

Monoclinic ZrO_2 and perovskite-type $SrZrO_3$ used as reference samples possess 7-coordinated and 6coordinated structures with lattice oxygen. XAFS spectra of SiO₂-ZrO₂ (Zr/Si = 0.004 or 0.007) were similar to that of SrZrO₃. Therefore, the local structure around Zr in these SiO₂-ZrO₂ is dissimilar to that in monoclinic ZrO₂ while seems to be similar to that perovskite-type SiZrO₃ that is 6-coordinated structures with lattice oxygen, that is, oxygen octahedron structure.

It should be noted that the increase of Zr/Si ratios in SiO_2 -ZrO₂ resulted in the enhancement of peak intensity due to monoclinic ZrO₂. These results indicate that the local structure around Zr of SiO_2 -ZrO₂ (Zr/Si = 0.004 or 0.007) may be present between 6- and 7-corordinated structure with lattice oxygen.

Table 1 showed the average coordination number estimated from the pattern-fitting analysis using XANES of both SiO₂-ZrO₂ and those of the reference samples (ZrO₂ and SrZrO₃). In Table 1, catalytic activity ratio and the corresponding selectivity of aldol condensation were also described. As shown in Table 1, it was further supported that the increase of Zr/Si ratio resulted in the enhancement of the average coordination number. In using Zr-SiO₂ (0.004 and 0.007), the catalytic activity for the production of a chemical that proceeded on acidic catalyst was examined. Although the enhancement of Zr/Si ratio in SiO₂-ZrO₂ resulted in the same activity of the reaction, under the same conversion level, the selectivity on SiO₂-ZrO₂ (0.004) was evidently greater than that on SiO₂-ZrO₂ (0.007).

Therefore it can be estimated in the present study that the enhancement of Zr/Si ratio in SiO_2 - ZrO_2 did not contributed to the enhancement of the catalytic reactivity in the present system, while the presence of 6-coordinated structure such as perovskite-type $SiZrO_3$ may be needed for the catalytic reaction.

The enhancement of the 6-coordinated structure in SiO_2 -ZrO₂ may be next target to obtain the great activity on the present catalyst system.

corresponding catalytic activity			
Zr/Si	Average	Catalytic	Selectivity
In	coordination	activity	ratio
Zr-SiO ₂	number	ratio	
0.004	6.29	1.00	1.00
0.007	6.38	0.99	0.96

Table 1: Average coordination number and the corresponding catalytic activity

References

- J. N. Chheda, G. W. Huber, and J. A. Dumesic, *Angew. Chem. Int. Ed.*, 46, 7164-7183 (2007)
- [2] Reza Sadeghbeigi, Fluid Catalytic Cracking Handbook, 2nd Edition, Chapter 3, p84, Butterworth-Heinemann (2000)
- [3] S. Damyanova, P. Grange, and B. Delmon, J. Catal. 168, 421 (1997)
- [4] Q. Zhuang and J. M. Miller, Appl. Catal. A, 209, pL1-L6, (2001)

* sugiyama@tokushima-u.ac.jp