Polyiodides in Room-Temperature Ionic Liquid

Hiroshi Abe^{1,*}, Hiroaki Kishimura¹, Mayumi Takaku², Mai Watanabe² and Nozomu Hamaya² ¹Department of Materials Science and Engineering, National Defense Academy, Yokosuka 239-8686, Japan

²Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

1 Introduction

Polyiodides (I_m) have been studied in various scientific fields since a long time.[1] Dye-sensitized solar cells (DSSCs) have been examined for high conversion efficiency. Recently, room-temperature ionic liquids (RTILs) were assembled into DSSCs on the basis of their electrochemical stability.[2] In redox couples, polyiodides combined with the RTILs were fabricated in the DSSCs. Very recently, ¹²⁷I-NMR experiments in the [C_nmim][I_m] system have supported the Grotthuss exchange mechanism by the doublet and triplet peak splitting at a relatively large *m*.[3] Here, the C_nmim⁺ cations were 1alkyl-3-methylimidazolium, and *n* denoted the alkyl-side chain length of C_nmim⁺.

2 Experiment

High pressure (HP) behavior of transparent pure $[C_3mim][I]$ was examined using diamond anvil cell (DAC) in BL-18C. In the mixed system, we performed HP experiments in NE5C with a multi-anvil assembly (MAX80), since ruby inside the DAC is useless as a pressure marker in the dark colored $[C_nmim][I_m]$.

3 <u>Results and Discussion</u>

Low-temperature phase (LT) behaviors were investigated using simultaneous X-ray diffraction and differential scanning calorimetry.[4] Crystallization of pure [C₃mim][I] was suppressed both at LT and HP (Fig. 1). In contrast, stoichiometric [C₃mim][I₃] having polyiodide easily crystalized at LT and HP. Hence, I₃⁻ (one of polyiodides) is regarded as a crystal forming factor, although I⁻ contributes to glass forming. This is a significant finding of an essential property of polyiodides.

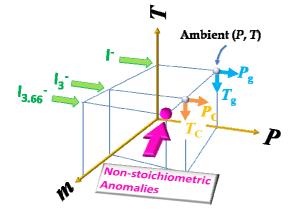


Fig. 1: Phase behaviors of $[C_3mim][I_m]$ at LT and HP.

Non-stoichiometric [C₃mim][I_{3.66}] demonstrated an entirely different phase behavior at LT. In the cooling process, the crystallization of [C₃mim][I_{3.66}] was not observed. While, upon heating, metastable frozen [C₃mim][I_{3.66}] exhibited cold crystallization. In order to interpret the complicated behaviors, we introduce the following assumption. Since [C3mim][I3] crystallized simply, [C₃mim][I₃] is defined newly to be pure RTIL system considering I_3^- anion as a crystal forming factor. Then, $[C_3mim][I_{3,66}]$ is rewritten by $[C_3mim][I_3] - 7.1$ mol% I₂. Thus, 7.1 mol% I₂ is regarded as an additive to new defined pure system of [C₃mim][I₃]. In some binary system, 7 mol% additive changes the phase behaviors drastically. It is pointed out that fluctuations of excess iodine occurs between C_3 mim⁺ and I_3^- . Thus, we deduce that complicated phase behaviors of non-stoichiometric $[C_3 mim][I_3] - 7.1 mol\% I_2$ are originated from the dynamic fluctuations of excess iodide/iodine.

Excess iodide/iodine of non-stoichiometric $[C_3mim][I_{3.66}]$ (or $[C_3mim][I_3] - 7.1$ mol% I_2) caused complicated behavior in the HP phases; (i) HP crystal polymorph, (ii) spatial heterogeneous solid phases (edge or central parts), and (iii) decompression crystallization.[4]

In the liquid state, the excess iodide/iodine destabilizes by propagating between cation and anion. The unbalanced fluctuation contributes to the non-stoichiometric anomalies at LT and HP. A significant finding of effect of the non-stoichiometric anomalies provides a new insight to polyiodide migration inside RTILs assembled in the DSSCs devices.

Acknowledgement

We thank Dr. T. Takekiyo and Prof. Y. Yoshimura of National Defense Academy for the helpful discussions. We also thank the Photon Factory Program Advisory Committee (Proposal Numbers: 2013G620, 2015G083).

References

- P. H. Svensson and L. Kloo, *Chem. Rev.* 103, 1649 (2003).
- [2] R. Kawano and M. Watanabe, *Chem. Commun.*, 330 (2003).
- [3] H. Abe et al., Phys. Chem. Chem. Phys. 18, 32337 (2016).
- [4] H. Abe et al., Faraday Discuss. (2007), in press.

*ab@nda.ac.jp