AR-NW10A/2014P007

XAFS による Eu₂Zr₂O₇, La₂Zr₂O₇の局所構造の研究 XAFS Study of Local Structures around Zirconium in Eu₂Zr₂O₇ and La₂Zr₂O₇

萩原健司^{1,*},野村勝裕²,蔭山博之³

1神奈川大学工学研究所,〒221-8686横浜市神奈川区六角橋 3-27-1

2国立研究開発法人産業技術総合研究所 中部センター、

〒463-8560名古屋市守山区下志段味穴ヶ洞 2266-98

3国立研究開発法人産業技術総合研究所関西センター,〒563-8577池田市緑丘1-8-31

Takeshi Hagiwara^{1,*}, Katsuhiro Nomura² and Hiroyuki Kageyama³

¹ Research Institute for Engineering, Kanagawa University,

3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan

²National Institute of Advanced Industrial Science and Technology (AIST) Chubu,

2266-98 Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, 463-8560, Japan

³National Institute of Advanced Industrial Science and Technology (AIST) Kansai,

1-8-31 Midorigaoka, Ikeda, 563-8577, Japan

1<u>はじめに</u>

固体中の酸化物イオン伝導は、結晶格子中を酸化 物イオンが移動することにより発現する。蛍石関連 構造であるパイロクロア型構造を持つ酸化物中では、 陽イオンが形成する三角形の隙間を酸化物イオンが 通過し、その狭い隙間を通過する際に必要なエネル ギーが酸化物イオン伝導の活性化エネルギーに関連 していると考えられている。酸化物イオン伝導メカ ニズムを結晶化学的視点からより詳細に検討するに は、原子レベルの局所的な構造評価が重要である。 そこで本研究ではランタノイドのイオン半径の大き さ (Eu³⁺: 0.107 nm, La³⁺: 0.118 nm) [1]に着目し、パ イロクロア型構造を持ち高い酸化物イオン伝導性を 示す Eu₂Zr₂O₇(以下 EZO と省略)と低い酸化物イ オン伝導性を示す La₂Zr₂O₇(以下 LZO と省略)を 作製し、Zr-K 吸収端の XAFS 測定を行い、Zr 原子 周りの局所構造の違いを明らかにすることを目的と した。

2 <u>実験</u>

一般的に日本国内で市販されている ZrO_2 には化学 的性質が Zr に似ている Hf が数%ほど含まれており、 それらを原料として用いて化合物を合成すると Zrサイトに Hf が固溶すると考えられる。本研究では より高い純度の化合物で XAFS 測定を実施するため に Hf 含有量の少ない ZrO_2 原料(99.7 %, Hf < 75 ppm)を用いて EZO と LZO を固相反応により合成 し、緻密焼結体を調製した。得られた焼結体を粉砕 し、窒化ホウ素を加えペレットを作成し、PF-AR の NW-10A において室温(300 K) と低温(100 K)の 各温度にて Zr-K 吸収端の透過法 XAFS 測定を行っ た。また参照試料として 8 mol%Y₂O₃安定化 ZrO_2 と **SrZr**_{0.9}**Y**_{0.1}**O**_{2.95} を合成し、同様にペレットを作成し同 条件で **XAFS** 測定を行った。

3 結果および考察

図1に300 K (赤) および100 K (青) にて XAFS 測定により得られた EZO の Zr-K 吸収端 EXAFS ス ペクトルを示す。また図2に同様に XAFS 測定した LZO の Zr-K 吸収端 EXAFS スペクトルを示す。

図 1. EZO の Zr-K 吸収端 EXAFS スペクトル (赤線: 300 K, 青線: 100 K)

(赤線: 300 K, 青線: 100 K)

温度低下による各スペクトルの変化に注目すると、 EZO ではスペクトルの変化は比較的小さいが、LZO では100 K で測定したスペクトルにおいて9Å⁻¹以上 の高波数側ではピークがよりシャープになり、300 K では観測されていなかったピークがはっきりと観 測された。また各参照試料と比較すると、EZO の Zr 原子周りの局所構造の温度変化は 8 mol%Y₂O₃安 定化 ZrO₂(図 3)のそれに類似しており、LZO の Zr 原子周りの局所構造の温度変化は SrZr_{0.9}Y_{0.1}O_{2.95} (図 4)のそれに類似していることが分かった。

図 4. SrZr_{0.9}Y_{0.1}O_{2.95}の Zr-K 吸収端 EXAFS スペクトル (赤線: 300 K, 青線: 100 K)

4まとめ

高い酸化物イオン伝導性を示す EZO と低い酸化 物イオン伝導性を示す LZO の長周期的な結晶構造 は同じパイロクロア型構造であるが、Zr 原子周りの 局所構造には明らかに差があることが示唆された。

5 謝辞

本研究課題を遂行するにあたり、仁谷浩明博士に 実験をサポートしていただきました。また本研究は 日本学術振興会から交付を受けた科研費(課題番号 26410248)により実施されました。この場をお借り して感謝申し上げます。

参考文献

[1] R.D. Shannon et al., Acta Cryst., B25, 925-946 (1969).

* hagi@kanagawa-u.ac.jp