Cross sections for the formation of H(2p) atom via doubly excited states in photoexcitation of para-H₂

Yuta Abe¹, Takeshi Odagiri^{1*}, Suguru Ohrui¹, Takuro Taniguchi¹, Takahisa Shiratori¹, Masashi Kaida¹, Kazushi Yachi², Yoshiaki Kumagai², Koichi Hosaka², Masashi Kitajima², and Noriyuki Kouchi²

¹Department of Materials and Life Sciences, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan ²Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

1 Introduction

Formation and decay of doubly excited states of H₂ has been theoretically and experimentally investigated [1,2]. Recently, it was found that the non-adiabatic transition would play a role in the dissociation of the $Q_2^{-1}\Pi_u$ doubly excited states of H₂ and D₂ [3,4]. In the present study, we measured cross sections for the formation of H(2p) atom in photoexcitation of para-H2 in the lowest rotational level, J'' = 0, for obtaining detailed information against the non-adiabatic transition. Only the ${}^{1}\Pi_{u}^{+}$ states as well as the ${}^{1}\Sigma_{u}^{+}$ states can be populated in photoexcitation from the J'' = 0 rotational level, while all the dipole allowed states $({}^{1}\Pi_{u}^{\pm}$ and ${}^{1}\Sigma_{u}^{+})$ can be formed in photoexcitation of ordinary-H₂ at room temperature. It is thus expected that the cross section for the rotationally cold H₂ could be different from those for ordinary-H₂ since the ${}^{1}\Pi_{\mu}^{\pm}$ states interact with the ${}^{1}\Sigma_{u}^{+}$ states differently due to the Kronig's selection rule [5].

2 Experiment

Linearly polarized light from BL20A beam line was introduced into the gas cell filled with H₂. A gas of H₂ in the lowest rotational level was obtained by a cryogenic ortho-para hydrogen converter. The gas cell was kept at approximately -186°C by using liquid-N₂ during the measurement. The rotational distribution in the sample was checked through measuring high-resolution photoion yield spectra. The Lyman- α photon emitted from the H(2p) atom produced through photoexcitation of H₂ were detected.

3 Results and Discussion

Figure 1 shows the cross sections for the formation of H(2p) atom for para- H_2 in the lowest rotational level, J'' = 0. The shape of the cross section curve agrees with that for ordinary- H_2 at room temperature within the statistical uncertainty.

Figure 1. Cross sections for the formation of H(2p) atom in photoexcitation of H_2 in the lowest rotational level

References

- [1] N. Kouchi et al., J. Phys. B 30 2319(1997).
- [2] M. Glass-Maujean and H. Schmoranzer, *J. Phys. B* **38** 1093(2005).
- [3] T. Odagiri et al., Phys. Rev. A 84 053401(2011).
- [4] K. Hosaka et al., Phys. Rev. A 93 063423(2016).

[5] G. Herzberg, Molecular spectra and molecular structure: I. Spectra of Diatomic molecules (New York: Van Nostrand 1950).

* odagiri.t@sophia.ac.jp