Crystal Structure and Scintillation Properties of Cs,Na-LTA Treated with Zirconium Chloride Vapor

Chung Woo Lee¹, Joon Young Kim², Nam Ho Heo^{2,*}, and Karl Seff³

¹Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, Korea

²Laboratory of Structural Chemistry, Department of Applied Chemical Engineering, Kyungpook National

University, Daegu 41566, Korea

³ Department of Chemistry, University of Hawaii, 2545 The Mall, Honolulu, Hawaii 96822, U. S. A

1 Introduction

 Cs^+ ions assembled with X-ray absorbers like Zr or Hf, e.g., Cs_2ZrCl_6 and Cs_2HfCl_6 , had scintillation properties [1]. Zeolites, because of their molecular dimensioned channels and cavities, can host relatively small molecules, relatively large cations, and continua. A broader range of compositions can be assembled within zeolites than those of pure and doped compounds, and this could lead to better scintillators. In this study, we expected that $ZrCl_4$ would be readily sorbed at a moderate temperature (523 K), where the vapor pressure of $ZrCl_4$ is reasonably high (3.7 X 10³ Pa) and dehydrated Cs,Na-A is stable[2]. Zr^{4+} would be readily identifiable crystallographically because its ionic radius and scattering power are very different from those of any of the other ions in the expected product Zr,Cl,Cs,Na-A.

2 Experiment

Large colorless transparent single crystals of zeolite A $(|Na_{12}(H_2O)_r||Si_{12}Al_{12}O_{48}|-LTA, Na_{12}-A\cdot xH_2O, or Na-A)$ was lodged in a thin Pyrex capillary. Aqueous CsC₂H₃O₂ (sigma-Aldrich, 99.99%+) (pH = 6.2) allowed to flow past it (dynamic ion exchange). A break-off sealed tube with anhydrous ZrCl₄ (sigma-Aldrich, 99.99%) was attached as a hydrated Cs,Na-A crystal prepared as above. After this crystal was fully dehydrated, the reaction vessel (the capillary containing the crystal, the tube above it, and the side arm containing the anhydrous ZrCl₄) was sealed off from the vacuum line. The internal seal was then broken and the ZrCl₄ was transferred to the tube. Finally, the side arm was sealed off. The resulting linear reaction vessel was heated to allow $ZrCl_4(g)$ to react with the zeolite. The diffraction intensities for the crystal was measured with synchrotron X-radiation at the BL-5A beam line of the Photon Factory, KEK, Japan.

3 Results and Discussion

 $|Zr_{0.14}Cs_{5.69}Na_{4.13}Cl_{0.85}|[Si_{12}Al_{12}O_{48}]-A$ (approximate formula, Table 1) was determined by single-crystal crystallography using synchrotron X-radiation. The structure of Zr,Cl,Cs,Na-A was refined in the space group $Pm\overline{3}m$ (a = 12.230(1) Å) with all unique data to the final error index R₁ = 0.069 for the 639 reflections for which $F_0 > 4\sigma(F_0)$. Octahedral $ZrCl_6^{2-}$ ions center 14% of the large cavities; each Cl⁻ ion bonds to an 8-ring Cs⁺ ion (See Fig. 1). These Cs⁺ ions bridge between $ZrCl_6^{2-}$ ions to form a continuum with unit cell formula Cs₃ $ZrCl_6^{+}$ in the near-surface volume of the crystal. Other Cs⁺ ions lie opposite 6-rings in the sodalite and large cavities. Upon X-irradiation Zr,Cl,Cs,Na-A luminesces bright sky blue; the emission band is broad, ranging from 370 to 750 nm, peaking at 480 nm (See Fig. 2).

Table 1: Assignment of Oxidation States and Charge Budget

	U				0 0
Atom	ions ^a	occupancy ^b	r, ^c Å	NC^d	ΣCharges
Cs1	Cs^+	3.0	2.06	4	3.0
Cs2	Cs^+	0.74(4)	1.79	3	0.74(4)+
Cs3	Cs^+	0.82(14)	1.50	3	0.82(14) +
Cs4	Cs^+	1.13(14)	1.69	3	1.13(14) +
Na1	Na^+	4.13(15)	0.93	3	4.13(15)+
Zr	Zr^{4+}	0.142(17)		6	0.59(7)+
Cl	Cl	0.85(10)		2	0.85(10)-
$\Sigma Cs = 5.69(20) \Sigma Na = 4.13(15)$			Σ charges = 9.6(3)+		
$\Sigma 7r - 0.142(17)$ $\Sigma Cl = 0.85(10)$					

^{*a*}Extraframework ions ^{*b*}Occupancy, ions per unit cell. ^{*c*}Radii of M ions obtained by subtracting 1.32 Å from the shortest M-O bond lengths. ^{*d*}Coordination numbers.

Fig. 1: Complexes and clusters in Zr,Cl,Cs,Na-A; (a) $ZrCl_6^{2-}$ and (b) the $Zr(ClCs)_6^{4+}$ unit associated further with eight surrounding Cs⁺ ions.

Fig. 2: Visible spectra of dehydrated Zr,Cl,Cs,Na-A powder and related materials upon irradiation with polychromatic X-rays (Cu target, 100 kV, 2mA)

References

[1] P. Bryan et al., J. Lumin **31**, 117 (1984).

[2] Jr. T. Vance et al., J. Phys. Chem 79, 2163 (1975).

* nhheo@knu.ac.kr