Crystallographic study of novel enzymes necessary for CoA biosynthesis in archaea

Yoshiki Aikawa¹, Akiko Kita², Yuichi Nishitani¹, and Kunio Miki¹, ²

¹Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
²Research Reactor Institute, Kyoto University, Kumatori, Sennan, Osaka 590-0494, Japan

1 Introduction
Coenzyme A (CoA) plays pivotal roles in a variety of metabolic pathways in all organisms. The biosynthesis pathway of CoA has been studied well in bacteria and eukaryotes. In this pathway, two enzymes which convert pantoate to 4'-phosphopantothenate are involved. These two enzymes are pantothenate synthetase (PS), which catalyzes the ATP-dependent condensation of pantoate and β-alanine to form pantothenate, and pantothenate kinase (PanK), which catalyzes the phosphorylation of pantothenate. The CoA biosynthesis pathway is regulated by feedback inhibition by CoA to PanK.

These two enzymes, PS and PanK are absent in almost all archaea. Instead, it was reported that two peculiar enzymes of archaea, pan toate kinase (PoK) and phosphopantothenate synthetase (PPS), are responsible for these conversion [1]. PoK catalyzes the ATP mediated phosphorylation of pantoate to form 4'-phosphopantoate. On the other hand, PPS catalyzes the ATP-dependent condensation of 4'-phosphopantoate and β-alanine. In the archaea PoK/PPS pathway, the order of the condensation reaction with β-alanine and the phosphorylation reaction are reversed compared to the PS/PanK reactions in bacteria/eukaryotes. In archaea, CoA biosynthesis feedback inhibition is not regulated by CoA binding to PoK or PPS, but to ketopantoate reductase (KPR) [2]. We have previously reported the crystal structure of PPS and its reaction mechanisms [3]. We report here the crystallographic studies of PoK and KPR from Thermococcus kodakarenensis.

2 Experimental
Crystals of PoK belonging to the space group of $P\overline{3}21$ with the cell dimensions of $a=94.8\,\text{Å}$, $c=60.0\,\text{Å}$ were obtained from PEG8,000 solutions. X-ray diffraction data were collected at the AR-NW12A beamline of the Photon Factory.

Crystals of the ternary complex of KPR from T. kodakarenensis (Tk-KPR), CoA, and 2-oxopantoate were obtained from 2-methyl-2,4-pentanediol solution. The crystals belong to the space group $P2_12_12_1$, with the cell dimensions of $a=53.5\,\text{Å}$, $b=70.8\,\text{Å}$, and $c=163.9\,\text{Å}$. The crystallization was also performed in the presence of NADH to investigate the effect of crystal packing.

When we superimposed two monomers in Tk-KPR crystal, the binding site of CoA is overlapped with that of NADP⁺. This result may indicate that the activity inhibition by CoA is competitive with NADH. Notably, monomer 2 adopts a relatively closed conformation compared to monomer 1. These results suggest that CoA and 2-oxopantoate cooperatively trigger a conformational change from an open form to a closed form.

Comparison of two Tk-KPR monomers with E. coli KPR indicates that monomer 1 of Tk-KPR represents a
resting state as previously reported for NADP-\(\text{-bound E. coli}\) KPR, and monomer 2 in its inhibited state is similar to products-bound E. coli KPR that represents an active state [5,7]. In E. coli KPR, the binding of pantoate is a key to adopt a closed form. Accordingly, comparisons of Tk-KPR and E. coli KPR also support the idea that 2-oxopantoate, located at the same position, is essential to adopt a closed form for Tk-KPR. Comparison between Tk-KPR and E. coli KPR also shows that the residues involved in CoA recognition in Tk-KPR are also involved in NAD(P)H recognition and highly conserved in archaea, whereas some are not conserved in E. coli KPR. Thus, the affinity of CoA for E. coli KPR would be lower than that for Tk-KPR, implying that E. coli KPR may not be inhibited by CoA. Significantly, Cys84, which is conserved among several Thermococcus strains but not among bacteria or eukaryotes, forms a disulfide bond with CoA (Fig. 2). This disulfide bond prevents dissociation of CoA from the active site, and enables strict inhibition of Tk-KPR activity upon binding of CoA.

![Fig. 2: Disulfide bond with CoA.](image)

References

* miki@kuchem.kyoto-u.ac.jp