XAFS Characterization of Size-Regulated Carbon-Supported Pt Nanoclusters with Polymer Matrix Overlayers

Satoshi MURATSUGU^{*1}, Shota MIYAMOTO¹, Kana SAKAMOTO¹, Kentaro ICHIHASHI¹, Nozomu ISHIGURO¹, Mizuki TADA^{1,2}

¹ Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
² RCMS and IRCCS, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan.

1 Introduction

We prepared size-regulated Pt nanoclusters from carbon-attached Pt tetranuclear (Pt₄) complex precursors and organic polymer matrix overlayers. A newly prepared Pt₄ complex was attached to the multi-wall carbon nanotube (MWCNT) and polypyrrole (PPy) matrix overlayers were successively stacked on the Pt₄ complex attached MWCNT. This composite was transformed to Pt nanoclusters for catalytic N-alkylation reaction. The oxidation states and the local coordination structures of the Pt₄ complex and Pt nanocluster supported on MWCNT were investigated by Pt L_{III}-edge XAFS.

2 Experimental

A Pt_4 complex (1) with anchoring ligand was attached on MWCNT (A). Then PPy matrix overlayers were stacked on the surface of A (B). Finally B was reduced to form Pt nanocluster catalyst (C). To see the effect of PPy matrix overlayres, A was reduced in a similar way of B to prepare Pt catalyst (D). Pt L_{III}-edge XAFS was measured in a transmission mode at 20 K at the BL-12C station with a Si(111) double-crystal monochromator. Ionization chambers filled with pure N2 and pure Ar were used to monitor incident and transmitted X-rays, respectively. EXAFS spectra were analysed using ATHENA and ARTEMIS programs. k^3 -Weighted EXAFS oscillations were Fourier transformed into R-space, and curve-fitting analysis was performed in R-space with coordination number (CN), interatomic distance (R), Debye-Waller factor (σ^2), and correction-of-edge energy (ΔE_0). Phase shifts and backscattering amplitudes were calculated by the FEFF8 code.

3 Results and Discussion

The local coordination structures of the MWCNT supported Pt complex and Pt nanocluster were analyzed by Pt L_{III}-edge EXAFS analysis (Table 1). **1** had Pt-Pt bond at 0.250 \pm 0.001 nm (Coordination number (CN): 3.9 \pm 0.8) and two Pd-O bonds at 0.200 \pm 0.001 nm (CN: 2.0 \pm 0.6) and 0.215 \pm 0.003 nm (CN: 1.6 \pm 0.6), which were similar to the Pt₄(CH₃COO)₈ complex precursor. The bond distances of the Pt-Pt coordination in **A** and **B** were both fitted as 0.250 \pm 0.001 (CN: 1.9 \pm 0.2 for **A**, 1.5 \pm 0.2 for **B**), those of Pt-O coordination were both fitted as 0.200 \pm 0.002 nm (CN: 2.7 \pm 0.7 for **A**, 2.7 \pm 0.4 for **B**) and 0.216 \pm 0.004 nm (CN: 1.5 \pm 0.6 for **A**, 1.3 \pm 0.4 for **B**), respectively, indicating that the local coordination structure of **1** was maintained after it was

attached to the MWCNT surface and successive stacking of PPy matrix overlayers.

The bond distances of the Pt-Pt coordination in C and D after the reduction were fitted as 0.273 ± 0.001 and 0.277 ± 0.001 , respectively, which were larger than those of A and B, and were close to Pt⁰ species. The Pt L_{III}-edge XANES of C and D indicated that the Pt oxidation stare of was reduced to ca. zero, supporting the EXAFS data. The CN (Pt-Pt) of C was 3.5 ± 1.1 , which was smaller than that of D (4.8 ± 0.7), indicating that the size of Pt nanocluster in C was much smaller. In fact, TEM image analyses of C exhibited small Pt nanoclusters of 1.0-1.3 nm with the narrow size distribution ($0.3\sim0.5$ nm), while broad size distributions with Pt particles with diameters of 3-4 nm were observed on D, suggesting that the PPy matrix overlayers had a positive effect to control size-regulation.

 $\begin{array}{l} \textbf{Table 1} & Structural Parameters Determined by Curve-Fitting Analysis of Pt L_{III}\text{-}edge EXAFS Measured at 20 K \end{array}$

Shell	CN	R /nm	$\Delta E_0 / eV$	$\sigma^2 / \times 10^5 \mathrm{nm}^2$
1 ^{<i>a</i>}				
Pt-Pt	2.2 ± 0.3	0.250 ± 0.001	7 ± 3	2 ± 1
Pt–O	2.0 ± 0.6	0.200 ± 0.001	5 ± 2	2 ± 2
Pt–O	1.6 ± 0.6	0.215 ± 0.003	5 ± 2	2 ± 2
A (Pt: 2.0 wt%) b				
Pt-Pt	1.9 ± 0.2	0.250 ± 0.001	7 ± 2	2 ± 1
Pt–O	2.7 ± 0.7	0.200 ± 0.002	3 ± 3	4 ± 2
Pt–O	1.5 ± 0.6	0.216 ± 0.004	3 ± 3	4 ± 2
B (Pt: 1.5 wt%) ^c				
Pt–Pt	1.5 ± 0.2	0.250 ± 0.001	7 ± 2	2 ± 1
Pt–O	2.3 ± 0.4	0.200 ± 0.002	4 ± 2	3 ± 1
Pt–O	1.3 ± 0.4	0.216 ± 0.004	4 ± 2	3 ± 1
C (Pt: 1.8 wt%) ^{d}				
Pt–Pt	3.5 ± 1.1	0.273 ± 0.001	11 ± 3	7 ± 1
Pt–O	0.7 ± 0.3	0.202 ± 0.001	21 ± 3	3 ± 2
Pt–C	1.3 ± 0.6	0.221 ± 0.003	21 ± 3	3 ± 2
D (Pt: 2.0 wt%) ^e				
Pt-Pt	4.8 ± 0.7	0.277 ± 0.001	14 ± 2	4 ± 1
$^{a} k = 30 - 180 \text{ nm}^{-1}, R = 0.12 - 0.30 \text{ nm}, R_{f} = 0.3\%.$				
$^{b} k = 30 - 180 \text{ nm}^{-1}, R = 0.12 - 0.30 \text{ nm}, R_{f} = 0.3\%.$				
$^{c} k = 30 - 180 \text{ nm}^{-1}, R = 0.12 - 0.30 \text{ nm}, R_{f} = 0.4\%.$				
$^{d} k = 30 - 180 \text{ nm}^{-1}, R = 0.12 - 0.32 \text{ nm}, R_{\rm f} = 3.1\%.$				
$^{e} k = 30 - 180 \text{ nm}^{-1}, R = 0.18 - 0.32 \text{ nm}, R_{f} = 1.8\%.$				

Reference

[1] S. Muratsugu, S. Miyamoto, K. Sakamoto, K. Ichihashi, C.-K. Kim, N. Ishiguro, M. Tada, *Submitted*.

* smuratsugu@chem.nagoya-u.ac.jp