Construction of Solid Electrolytes by using Inorganic-Organic Hybrid Crystals

Takeru Ito^{1,*} Yoshiki Kiyota, Jun Kobayashi, and Tatsuhiro Kojima² ¹Department of Chemistry, School of Science, Tokai University, Hiratsuka 259-1292, Japan. ²Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

1 Introduction

Solid electrolytes are crucial materials for lithium-ion or fuel-cell battery technology due to their structural stability and easiness for handling. Emergence of high conductivity in the solid electrolytes requires precise control of the composition and structure. A promising strategy toward highly conductive solid electrolytes is to employ thermally stable inorganic component and structurally flexible organic moiety to construct inorganic-organic hybrid materials. [1]

We report here syntheses and structures of Li^+ cationcontaining hybrid crystals by using decavadate ($[V_{10}O_{28}]^{6-}$, V_{10}) anion and surfactant (*n*-octylammonium, $[C_8H_{17}NH_3]^+$, C_8NH_3) cations. [2] Two types of crystals with and without Li^+ cation, C_8NH_3 - V_{10} and C_8NH_3 -Li- V_{10} , were obtained as single crystals.

2 Experiment

The synthetic procedures are simple ion-exchange reactions. $C_8NH_3-V_{10}$ without Li⁺ cation was synthesized by adding pH-adjusted V_2O_5 aqueous solution (pH 6.0) to C_8NH_3 ethanol solution. Obtained yellow-orange precipitates of $C_8NH_3-V_{10}$ were filtered off, and washed with ethanol. Yellow rod crystals were obtained from the filtrate or aqueous solution of $C_8NH_3-V_{10}$. Yellow platelet crystals of $C_8NH_3-Li-V_{10}$ with Li⁺ cation were obtained from the washing ethanol solution of the precipitates of $C_8NH_3-V_{10}$. Conductivity measurements were carried out by alternating current (AC) impedance method under a dry Ar atmosphere at 403 or 413 K. X-ray diffraction measurements were performed at the PF-AR NW2A beamline as well as with a laboratory diffractometer.

3 Results and Discussion

The precise control of synthetic procedure enabled the introduction of Li^+ cation by compositional control. The C_8NH_3 -Li- V_{10} is the first polyoxometalate-surfactant crystal with Li^+ cation introduced.

The formula of $C_8NH_3-V_{10}$ without Li⁺ cation was $[(C_8H_{17})NH_3]_6[V_{10}O_{28}]\cdot 2H_2O$, revealed by the single crystal X-ray analysis. Six C_8NH_3 cations (1+ charge) were associated with one V_{10} anion (6- charge) due to the charge compensation. No other small counter cation was included, although V_{10} anion tends to be hybridized with several numbers of proton in the crystals. The crystal packing consisted of alternating V_{10} inorganic monolayers parallel to the *bc* plane and C_8NH_3 surfactant organic layers with a layered distance of 20.8 Å (Fig. 1a).

 C_8NH_3 -Li- V_{10} with Li⁺ cation was formulated to be $[(C_8H_{17})NH_3]_4Li_2[V_{10}O_{28}]\cdot 4C_2H_5OH\cdot 6H_2O$, and four

 C_8NH_3 and two Li^+ cations were associated with one V_{10} anion (Fig. 1b). The Li^+ cations exhibited four-coordination geometry, connected to O atoms of water molecules and of V_{10} anion to form an anion formulated as $\{[Li(H_2O)_3]_2[V_{10}O_{28}]\}^4$ (denoted as Li_2V_{10}). The crystal packing consisted of alternating Li_2V_{10} inorganic monolayers and C_8NH_3 organic layers (Fig. 1b) with a layered distance of 21.5 Å.

The anhydrous conductivities at the intermediate temperature range were $8.2 \times 10^{-8} \text{ S cm}^{-1}$ for $C_8 \text{NH}_3 \text{-V}_{10}$, and $1.1 \times 10^{-8} \text{ S cm}^{-1}$ for $C_8 \text{NH}_3 \text{-Li-V}_{10}$. The lower conductivity of $C_8 \text{NH}_3 \text{-Li-V}_{10}$ may be because the Li⁺ cations were in the O-H···O hydrogen bonding network through the water ligands, which plausibly prevented easy movement of the Li⁺ cations.

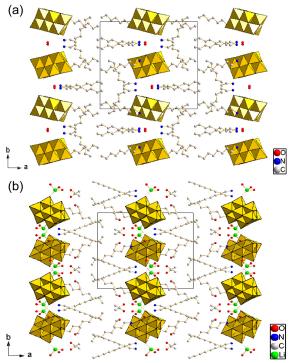


Fig. 1: Crystal structures of (a) $C_8NH_3\mathchar`-V_{10}$ and (b) $C_8NH_3\mathchar`-Li\mathchar`-V_{10}.$

References

- [1] T. Ito, Crystals, 6, 24 (2016).
- [2] Y. Kiyota, M. Taira, S. Otobe, K. Hanyuda, H. Naruke, and T. Ito, *CrystEngComm*, **19**, 3037 (2017).
- * takeito@keyaki.cc.u-tokai.ac.jp