BL-27B/2016G581

XAFS 分光による強酸性溶液中でのポリモリブデン酸の構造研究 XAFS study on structural change of polyoxomolybdate in highly acidic solution

佐伯盛久^{1,*}, 岡本芳浩², 下山巖², 蓬田匠²
¹ 量子科学技術研究開発機構, 〒319-1106 茨城県那珂郡東海村大字白方 2-4
² 日本原子力研究開発機構, 〒319-1195 茨城県那珂郡東海村大字白方 2-4
Morihisa Saeki^{1,*}, Yoshihiro Okamoto², Iwao Shimomura², and Takumi Yomogida²
¹QST, 2-4 Tokai-mura, Naka-gun, Ibaraki, 319-1106, Japan
²JAEA, 2-4 Tokai-mura, Naka-gun, Ibaraki, 319-1195, Japan

1 緒言

ポリモリブデン酸[Mo_mO_nPは複数のモリブデン原 子Moが酸素原子Oを介して結合し、集合体を形成し たものであり、元素を選択的に吸着したり、光触媒 活性を示す、機能性材料として知られている。また 原子力分野においては、再処理プロセスにおいて作 成する高レベル放射性廃液中でポリモリブデン酸が 形成され、それが沈殿物となりプロセスを阻害する 原因となっているため、ポリモリブデン酸の強硝酸 溶液中での挙動には興味を持たれている。

モリブデンは中性の水溶液中では6価負イオン [Mo(IV)O₄]²として安定に存在するが、酸を加える とpH5-6の領域で脱水縮合反応

7[MoO₄]²⁻ + 8H⁺ → [Mo₇O₂₄]⁶⁻ + 4H₂O <u>1</u> を起こし、7個のMoを含むポリモリブデン酸 [Mo₇O₂₄]⁶⁻を形成する。さらに酸濃度を高めると脱水 縮合反応がさらに進行し、pH 1よりも大きい酸濃度 領域では[Mo₈O₂₆]⁴, [Mo₁₂O₄₀(OH)₂]¹⁰, [Mo₃₆O₁₁₂]⁸⁻など の8-36個のMo原子を含むポリ酸やそのプロトン 付加体を形成することが、化学平衡論に基づく起電 力測定法などにより精密に調べられている[1]。

一方、pH 1よりも小さい酸濃度領域では、pH 1付 近で形成されていた[$Mo_{36}O_{112}$]⁸が分解し、pH 0付近 で[$Mo_{2}O_{5}(H_{2}O)$]²⁺が形成されると考えられている (図 1)[2]。pH 0–1の領域には等電位点が存在し、 この領域で負イオンだったポリモリブデン酸が正イ オンに変化する。このように、[$Mo_{36}O_{112}$]⁸→ [$Mo_{2}O_{5}(H_{2}O)$]²⁺の変化は電荷の反転を伴うものであ り、かつ幾何構造も大きく変化しているので、その 間に両者をつなぐ中間構造が存在する可能性がある が、これまでにその報告例はない。

pH 0–1のような強酸性領域では化学平衡論に基づ く構造決定は困難なので、ラマンや核磁気共鳴、X 線吸収などの分光法による構造解析が必要になる。 そこで、本課題ではX線吸収微細構造(X-ray absorption fine structure: XAFS)分光により、強酸領 域におけるHNO₃およびHCl溶液中でのポリモリブデ ン酸の構造を調べ、 $[Mo_{36}O_{112}]^{8-}$ と $[Mo_{2}O_{5}(H_{2}O)]^{2+}$ の間 に存在する可能性のある中間構造を探索した。

2 <u>実験</u>

ポリモリブデン酸の溶液試料は、 $(NH_4)_6Mo_7O_{24}$ · 4H₂O結晶を純水に溶解したものを準備し、そこに HNO₃またはHCl溶液を加えて酸濃度を調整した。調 整した2 mL程度の試料は光路長10 mmのキャップ付 石英セルに入れ、Mo K-edge (20.0 keV) 近傍で透過型 XAFSを測定した。分光結晶はSi(111)を用い、測定 はBL-27Bにおいて行った。また、固体試料は吸収端 におけるエッジジャンプ $\Delta \mu$ (E)が1程度になるよう に窒化ホウ素粉末と混ぜて濃度を調整し、プレス機 でペレット状に整形したものを測定した。

3 結果および考察

0.1–1.0 M HNO₃とHCl溶液中で30 mM $[Mo_7O_{24}]^6$ 溶液の広域X線吸収微細構造(EXAFS)を測定した。 図 2 に、測定したEXAFS振動を、k=3.5–18 Å⁻¹の波数領域でフーリエ変換することによって得た、動径構造関数を示す。なお、EXAFS振動の変換に際し、長距離側のバンドを強調するため、k³の重みをかけ た。R=1-2 ÅのバンドはMo-O、R=2.5-3.5 Åのバン ドはMo-Moの原子間距離に対応する。HNO₃とHCl 溶液の結果を比較すると、0.15-1.0 Mの酸濃度領域 では、動径構造関数の形状は一致している。これは、 生成するポリモリブデン酸の構造が、共存する負イ オン (NO₃-およびCl⁻)の影響を受けることなく、プ ロトン濃度のみで決まることを示している。一方、 0.1 M HNO₃とHCl溶液ではMo-Moバンドの形状が異 なっており、この濃度では負イオンがポリモリブデ ン酸の構造に関与していると予想される。さらに、 0.15-1.0 Mの酸濃度領域における動径構造関数の酸 濃度依存性に着目すると、酸濃度の増加につれ、

Mo-Moバンドが弱まり、またMo-Oバンドの形状も変化することがわかる。この酸濃度領域では $<math>[Mo_{36}O_{112}]^8-が[Mo_2O_5(H_2O)]^{2+}に変化するので、Mo-Moバンド強度の減少はポリモリブデン酸中に含ま$ れるMo原子数の減少を意味すると考えられる。

ところで酸性溶液中でのポリモリブデン酸研究で は、溶液から結晶を作成し、その構造をX線回折や ラマン・赤外分光で調べることにより、その構造を 特定することが行われている。しかし、結晶化した ポリモリブデン酸の構造は、溶液中のものとは異な る可能性があるにも関わらず、その検討はあまりな されていない。そこで、0.1-0.2 M HNO₃溶液を常温 で1日程度放置し、生成したポリモリブデン酸結晶 のEXAFSを測定して、同じ濃度のHNO₃溶液中のも のと比較した(図3)。その結果、0.1 Mと0.2 Mで は、特にMo-Moバンド領域で、溶液中のポリモリブ デン酸は結晶と異なる構造をとることがわかっ た。一方、 0.15 M溶液から採取されたポリモリ ブデン酸のEXAFSは溶液中のものとほぼ一致してお り、この濃度では溶液中の構造を保ったまま結晶化 していることがわかった。さらに0.15 M溶液から採 取されたポリモリブデン酸のラマンスペクトルを 測定すると(NH₄)₈Mo₃₆O₁₁₂結晶のものと一致してお り、この酸濃度ではポリモリブデン酸は[Mo₃₆O₁₁₂]⁸⁻ として存在していることが確認できた。

4 <u>まとめ</u>

強酸性領域(0.1-1.0 M)におけるポリモリブデン酸の構造をEXAFSにより調べた。その結果、0.15-1.0 Mの領域では、酸の種類に依らず、ポリモリブデン酸の構造はプロトン濃度にのみ依存することがわかった。一方、酸性溶液から生成するポリモリブデン酸結晶のEXAFSを、溶液中のものと比較した結果、0.15 Mでは溶液中の構造を再現したポリモリブデン酸結晶を得られることがわかった。さらに、その結晶のラマン測定を行うことにより、0.15 M HNO₃溶液中ではポリモリブデン酸は[Mo₃₆O₁₁₂][®]として存在していることが確認できた。

今後は、0.2 M HNO₃よりも強酸性領域側のEXAFS スペクトルの解析を進め、[Mo₃₆O₁₁₂]⁸と [Mo₂O₅(H₂O)]²⁺の間に存在する可能性のある中間構 造の探索を進めていく。

謝辞

本研究の一部はJSPS科研費15H04248の助成を受け て行いました。

参考文献

- Y. Sasaki and L. G. Sillén, Ark. Kemi 29, 253-277 (1967).
- [2] M. T. Pope, In *Heteropoly and Isopoly Oxometalates*, Springer: Berlin, Chapter 2, pp 15-48 (1983).

* saeki.morihisa@qst.go.jp