X-ray absorption spectroscopy of bis(dithiolene) complexes

Hiromi Ikeura-Sekiguchi^{1,*} and Tetsuhiro Sekiguchi² ¹Research Institute for Measurement and Analytical Instrumentation (RIMA), National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

²Japan Atomic Energy Agency (JAEA), Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan

1 Introduction

Metal dithiolene complexes have been extensively investigated for more than half a century [1] because of their unique chemical and physical properties and also variety of applications such as photo energy conversion, non-linear optics, and electronic or photonic devices [2]. Nevertheless, oxidation states of the complexes are still less understood due to redox non-innocent nature of ligands. Therefore in order to investigate the oxidation or chemical states of Ni dithiolene complexes, we used sulfur *K*-edge X-ray absorption spectroscopy (XAS).

2 Experiment

Experiments were performed at beamline BL-27A with an InSb(111) double-crystal monochromator with an energy resolution of ca. 0.8 eV around S *K*-edge. The XAS spectra of polycrystalline TBA[Ni^{III}(mnt)₂] and Ni^{II}(S₂C₂Ph₂)₂ (mnt = maleonitriledithiolate, TBA = tetra n-butyl ammonium, as shown inset of Fig. 1) were measured using monitoring sample drain current near the S *K*-edge (2465–2505 eV) and normalized to the incident flux with thin aluminum films. Such energies were chosen to excite the S 1*s* core electron to 3*p* and 4*p* unoccupied orbitals.

3 Results and Discussion

Fig. 1 shows S *K*-edge XAS spectra of polycrystalline neutral form of Ni(S₂C₂Ph₂)₂ and oneelectron oxidized form of [Ni^{III}(mnt)₂]⁻. Based on previous study [3], peak A is assigned to S $1s \rightarrow b_{1g}$ *(Ni $3d_{xy}^* - L_{xy}$) transition. Peak B and C are assigned to S $1s \rightarrow \sigma^*$ (S–C–CN) and S $1s \rightarrow \sigma^*$ (S–C) transitions, respectively. Peak D is attributed to S $1s \rightarrow 4p$. Features of peak A in both samples are resemble in each other but the peak position of [Ni^{III}(mnt)₂]⁻ is slightly shifted to higher energy (~0.3eV) than that of Ni^{II}(S₂C₂Ph₂)₂. This shift would be caused by difference in Ni oxidation states, where effective nuclear charge (Z_{eff}) of Ni is larger for the [Ni^{III}(mnt)₂]⁻.

Although a chemical component $[Ni(mnt)_2]^-$ in the TBA[Ni^{III}(mnt)_2] is similar to that in $[(n-C_4H_5)N][Ni^{III}(mnt)_2]$ [3], it was found that S *K*-edge XAS features are different. Especially, SOMO (Singly Occupied Molecular Orbital) at lower energy position of peak A has not been observed in the TBA[Ni^{III}(mnt)_2]. This suggests that ligand π^* contribution in SOMO may be much smaller in the TBA[Ni^{III}(mnt)_2]. However, in general, such different contribution is not plausible for the

same chemicals. Therefore, further consideration is needed to understand this contradiction. Also a low-lying out-of-plane ligand π^* orbital corresponding to S $_{1s} \rightarrow b_{3g}^*(L_{yz})$ transition emerging between peaks A and B has not been observed, differently from the XAS of the [(n-C₄H₅)N][Ni^{III}(mnt)₂] [3].

Fig. 1: S *K*-edge XAS spectra of polycrystalline samples of $Ni^{II}(S_2C_2Ph_2)_2$ (black solid line, black chemical formula) and TBA[$Ni^{III}(mnt)_2$] (blue dot line, blue chemical formula).

Acknowledgements

We thank the staff of the Photon Factory and BL27A (JAEA) for supporting experiments.

References

[1] G.N. Schrauzed, and V. Mayweg, J. Am. Chem. Soc., 84, 3221(1962).

[2] B.G Bonneval, K.I.M-C Ching, F. Alary, T-T. Bui, and L. Valade, *Coord. Chem. Rev.*, **254**, 1457 (2010).

[3] T. Hatsui, Y. Takata, and N. Kosugi, J. Synchrotron Rad. 6, 379 (1999).

*ikeura-sekiguchi@aist.go.jp