Characterization of PdCuCr Ternary Nanoparticles Constructed within a Basic Resin Kohsuke MORI,^{1,2,3*} Kohei NAKA,¹ Shinya MASUDA,¹ and Hiromi YAMASHITA^{1,3} ¹Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan ²JST, PRESTO, Saitama, 332-0012, Japan ³ESICB Kyoto University, Kyoto, 615-8245, Japan

1 Introduction

Hydrogen has received increasing attention as a candidate for clean energy, and efficient energy conversion can be realized by combining with fuel cell technology. However, the widespread application of hydrogen as a transportation fuel is limited, mainly because of controllable storage and delivery problems. A considerable amount of research effort is currently devoted to exploring new storage methods.¹⁻⁵ Among investigated, formic acid (HCOOH), which is a liquid at room temperature and contains 4.4 wt% hydrogen, is one of the major products formed during biomass processing and is widely recognized as a convenient hydrogen carrier for fuel cells designed for portable use.

In the course of our ongoing studies to explore practical catalysts for targeted reactions, we found that PdCuCr ternary NPs within a macroreticular basic resin exhibit significant catalytic enhancement over that of bimetallic PdCu, PdCr, and monometallic Pd NPs. Here, we report the detail charactyerization of Cr species by in sutu XAFS measurements.

2 Experiment

Synthesis of PdCuCr/resin catalyst: Prior to the deposition, resins were crushed by a ball mill (600 rpm for 10 min). The resin (1.0 g) was mixed with 80 mL of aqueous solution containing 10 mL of PdCl₂ (29.7 mM), 5 mL of CuCl₂·2H₂O (29.7 mM), and 5 mL of Cr(NO₃)₃·9H₂O (29.7 mM) and stirred at room temperature for 1 h. The suspension was evaporated under vacuum and the obtained powder was dried overnight. Subsequently, the samples were pre-reduced with NaBH₄, giving PdCuCr/resin (Pd 3wt%; molar ratio of Pd : Cu : Cr = 1 : 0.5 : 0.5).

3 Results and Discussion

The Cr K-edge XANES spectrum for CrO₃ had an intense pre-edge peak at 5992 eV, which is characteristic of terminal Cr⁶⁺=O species with a tetrahedral coordination (**Figure 1A**). The shape of the XANES spectrum for PdCuCr/resin is quite different from that of CrO₃ due to the absence of the characteristic pre-edge peak, but is similar to those of Cr³⁺-type spectra, such as Cr₂O₃ and Cr(NO₃)₃. The edge energy for the PdCuCr sample is higher than that for Cr foil, which suggests that the Cr species is in a +3 oxidation state. In the FT-EXAFS spectra, the bond length of the first Cr–O bond in PdCuCr resembles those in Cr₂O₃ and Cr(NO₃)₃, but is longer than that in CrO₃, which reveals the lack of a Cr=O double bond in the PdCuCr/resin sample (**Figure 1B**). In comparison with the reference Cr₂O₃, the intensity of the

second peak for PdCuCr/resin is significantly weakened. This peak in PdCuCr is attributable to the contiguous Cr–O–M (M: Cr, Cu, Pd) bonds. The reduced intensity in this region can be explained by the formation of structurally disordered and extremely small NPs. No metallic bonds, detectable at around 2.3 Å for Cr foil, were observed. Since the reduction potentials of Cr³⁺ ions (E°(Cr³⁺/Cr²⁺) = -0.42 V, E°(Cr²⁺/Cr⁰) = -0.90 V vs. NHE) are more negative than Pd²⁺ and Cu²⁺ ions (E°(Pd²⁺/Pt⁰) = +0.99 V, E°(Cu²⁺/Cu⁰) = +0.34 V vs. NHE), the reduction of Cr³⁺ ions is retarded more than those of Pd²⁺ and Cu²⁺ ions, and preferentially constitute extremely small clusters on the surface of NPs by interaction with Pd⁰ and Cu⁰.

Figure 1. Cr K-edge (A) XANES and (B) FT-EXAFS spectra.

References

- [1] M. Wen, K. Mori, Y. Kuwahara, H. Yamashita, ACS Energy Lett., 2, 1-7 (2017).
- [2] K. Mori, T. Taga, and H. Yamashita, ACS Catal., 7, 3147 (2017)
- [3] K. Mori, S. Masuda, H. Tanaka, K. Yoshizawa, M. Che, H. Yamashita, *Chem. Commun.*, 53, 4677 (2017).
- [4] K. Mori, M. Dojo, H. Yamashita, ACS Catal., 3, 1114 (2013).
- [5] K. Mori, H. Tanaka, M. Dojo, K. Yoshizawa, H. Yamashita, *Chem. Eur. J.*, 21, 12085 (2015).
- [6] K. Mori, K. Naka, S. Masuda, H. Yamashita, *ChemCatChem*, in press.
- * mori@mat.eng.osaka-u.ac.jp