High-Diffraction-Efficiency Wide-Acceptance-Angle
Laminar-Type Diffraction Gratings Overcoated with Oxide Films for
Boron-K Emission Spectroscopic Measurements

Masato KOIKE1,*, Tadashi HATANO2, Alexander S. PIROZHKOV1, Ryuichi UKITA3, Hiroaki NISHIHARA3, Hiroyuki SASAI3, and Tetsuya NAGANO3

1Kansai Photon Science Institute, Quantum Beam Sciences Directorate, National Institutes for Quantum and Radiological Science and Technology
8-1-7 Unemidai, Kizugawa, Kyoto 619-0215, Japan
2Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
3Device Department, Shimadzu Corporation
1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto, Kyoto 604-8511, Japan

Theoretical and experimental studies have been performed to explore the enhancement of diffraction efficiency of diffraction gratings around B-K emission (6.76 nm, 184 eV) spectrum based on overcoating with materials having high reflectivity and small extinction coefficient (T layer) on conventional metal layer (M layer) coated gratings. In the previous study we confirmed this effect with a laminar-type Ni-coated diffraction grating overcoated with diamond-like carbon (DLC). In this report the authors examine this effect using TiO2 or CeO2 layer as the T layer and Ni as the M layer by numerical calculations and measurements by use of the reflectometer at the PF-BL11D beamline. As the results, the enhancements of diffraction efficiency at 6.76 nm are 2.2 and 3.4 times with the T layers having optimum thickness of 22.0 and 30.2 nm at the incident angles of 85.26° and 84.49° for TiO2 and CeO2 layers, respectively, compared with a conventional Ni coated grating used at an incidence angle of 87.07°.

1 Introduction

There has been a great demand from both academic and industrial communities in highly sensitive spectroscopic measurement in the soft X-ray region containing emission and absorption associated with the inner shell transitions of light elements. Especially boron is the critical trace element due to the advantage of improving quenching characteristics in steel. To detect the B-K emission band at around 6.76 nm more efficiently we performed a feasibility study to enhance the diffraction efficiency of laminar-type diffraction grating based on a newly discovered physical phenomenon in the region of total reflection. The phenomenon is embodied by overcoating a transparent high-density material on a metal layer on grating grooves. We have found that the overcoating material should have middle refractive index between those of vacuum and the metal layer, and small extinction coefficient, i.e. high transparency. We have already found that tetrahedral amorphous carbon, namely diamond-like carbon (DLC), in which sp3 hybrid orbital (diamond structure) is dominant, is a suitable material for this purpose by numerical calculations [1]. The DLC layer can be produced by use of a filtered arc method [2]. The enhancement of diffraction efficiency by means of this technique was confirmed by the measurements at a synchrotron radiation facility [3].

The purpose of this report is to show simulation and experimental results which demonstrate that similar enhancement of diffraction efficiency can be obtained by use of well-known TiO2 and CeO2 layers. Our efforts are also extended to the optimizations of the thickness of the oxide layer as well as the incidence angle which increases spectral flux due to widening of the acceptance angle of the grating.

2 Experiment

Figure 1 shows a schematic diagram of the cross section of the new laminar-type diffraction grating having a rectangular groove shape. Geometrical parameters of the base Ni-coated grating used throughout this study are as follows: grating constant, \(\sigma \), of 1 / 1200 mm; duty ratio, \(D = a / \sigma \), of 0.41; groove depth, \(h \), of 14.0 nm; diffraction order, \(m \), of +1. Also assumed was a metal layer of Ni layer (M layer) having a thickness, \(d_1 \), of 30 nm. The

Fig. 1: Schematic diagram of a new laminar-type grating coated with Ni and TiO2 or CeO2.
initially designed incident angle, \(\alpha \), of the Ni-coated grating is \(87.070^\circ \).

It is a common practice to coat the grating with a highly reflective material to enhance the diffraction efficiency of a grating for any spectral region. Table 1 shows the list of common and newly investigated materials, and their theoretical density, \(\rho \), complex refractive index parameters defined by \(n = (1 - \delta) + i \beta \) (\(\beta \) extinction coefficient), and \(\theta/\theta_C \), i.e., glancing angle of incidence, \(\theta = (90^\circ - \alpha) \), divided by critical angle measured from the surface, \(\theta_C \) [4]. Here, a-C and ta-C stand for amorphous graphite and DLC.

Figure 2 shows the reflectance curves for \(\delta/\beta = 0, 0.05, 0.10, 0.20, 0.40, 0.80, \) and 1.00. The abscissa indicates the value of \(\theta \) normalized to \(\theta_C \). In the figure the calculated reflectance of Ni, Au, Si, SiC, SiO\(_2\), a-C, ta-C, TiO\(_2\), and CeO\(_2\), at \(\lambda = 6.76 \) nm and \(\theta = 5.5^\circ \) are plotted against respective values of \(\theta/\theta_C \). Carbon based a-C and ta-C show high reflectance as seen in this figure. From this figure it is found that TiO\(_2\) and CeO\(_2\) would exhibit high diffraction efficiency as well as ta-C and a-C comparing with conventional metals, Ni and Au, and silicides, if the grating grooves could be ruled in ta-C and a-C.

Finally we found that the optimum thicknesses were 25.8 nm and 31.5 nm at the incident angles of 84.360° and 82.840° respectively. The grating groove width \(s \) is critical angle measured from the reflecting surface at \(\lambda = 6.76 \) nm, and \(\theta = 5.5^\circ \) is glancing angle of incidence.

Table 1: Density and optical constants of common and investigated coating materials. Here \(\sigma \) is density, \(\delta \) and \(\beta \) are defined by complex refractive index, \(n = (1 - \delta) + i \beta \), \(\theta_C \) is critical angle measured from the reflecting surface at \(\lambda = 6.76 \) nm, and \(\theta = 5.5^\circ \) is glancing angle of incidence.

<table>
<thead>
<tr>
<th>Material</th>
<th>(\rho) (g/cm(^3))</th>
<th>(\delta)</th>
<th>(\beta)</th>
<th>(\theta/\theta_C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>8.9</td>
<td>0.025200</td>
<td>0.018933</td>
<td>0.428</td>
</tr>
<tr>
<td>Au</td>
<td>19.32</td>
<td>0.014819</td>
<td>0.008417</td>
<td>0.558</td>
</tr>
<tr>
<td>Si</td>
<td>2.33</td>
<td>0.008062</td>
<td>0.009647</td>
<td>0.756</td>
</tr>
<tr>
<td>SiC</td>
<td>3.22</td>
<td>0.011704</td>
<td>0.009662</td>
<td>0.627</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>2.2</td>
<td>0.009525</td>
<td>0.005422</td>
<td>0.695</td>
</tr>
<tr>
<td>a-C</td>
<td>2.2</td>
<td>0.008900</td>
<td>0.000757</td>
<td>0.720</td>
</tr>
<tr>
<td>ta-C</td>
<td>3.1</td>
<td>0.012550</td>
<td>0.001066</td>
<td>0.606</td>
</tr>
<tr>
<td>TiO(_2)</td>
<td>4.26</td>
<td>0.015919</td>
<td>0.004000</td>
<td>0.537</td>
</tr>
<tr>
<td>CeO(_2)</td>
<td>7.3</td>
<td>0.022130</td>
<td>0.003725</td>
<td>0.456</td>
</tr>
</tbody>
</table>

3 Results and Discussion.

Figure 3 shows the relation of the incidence angle with diffraction efficiency of the first order light \((m = +1) \) at \(\lambda = 6.76 \) nm for the gratings coated with Ni(30.0), Ni(30.0)/TiO\(_2\)(22.0), and Ni(30.0)/CeO\(_2\)(30.2). The numbers in the parentheses show the thickness of the layer in nm. The diffraction efficiencies of the grating coated with Ni, Ni/TiO\(_2\), and Ni/CeO\(_2\) layers were 0.139, 0.173, and 0.191 at the incidence angle of \(87.070^\circ \), respectively. The corresponding maximum diffraction efficiencies were 0.173, 0.206, and 0.282 at the incidence angles of 84.420°, 85.262°, and 84.492° for the gratings coated with Ni, Ni/TiO\(_2\), and Ni/CeO\(_2\) layers, respectively. For the case of the width of the diffraction grating in view of the incident light direction is proportional to the amount of incident flux (\(\propto \cos \alpha \)), the gains of the
incidence flux are 1.51, 1.61, and 1.88 times, and finally the enhancements of diffracted spectral flux are 1.87, 2.39 and 3.81 times compared to those of the Ni coated grating used at the incidence angle of 87.07°, respectively.

Figure 4 shows wavelength dependence of the diffraction efficiencies of the gratings coated with the Ni, Ni/TiO$_2$, and Ni/CeO$_2$ for the incidence angles of 87.07°, 85.26° and 84.49°, respectively. The grating overcoated with CeO$_2$ shows high diffraction efficiency in the vicinity of B-K. However, it is found that the diffraction efficiency significantly decreases toward 11 nm, which is considered to be attributed to the absorption of $4d^{10}4f \rightarrow 4d^94f^2$ transition [6]. The deviations between the calculated and experimental peak positions and values of diffraction efficiencies appeared for Ni/TiO$_2$ and Ni/CeO$_2$ coated gratings are considered to be due to the optical constants and thickness of the coatings assumed for the calculations as well as the surface roughness, and required to perform further investigations.

It is well known that TiO$_2$ is a unique material having photocatalyst effect [7], therefore, it could be expected that TiO$_2$ layer circumvents the phenomenon of seizure attributed to residual contaminants on the surface of the optical elements including diffraction gratings in the ultra-high vacuum apparatus such as a synchrotron radiation beamline.

Acknowledgements
This work was partly supported by CAMS Project 2016 of “Development of high diffraction efficiency coating method of extreme ultraviolet diffraction gratings,” IMRAM, Tohoku University. A part of this research was carried out as a joint research “Development of low incident angle high efficiency gratings in extreme ultraviolet region” of Shimadzu Corp., Tohoku University, and National Institutes for Quantum and Radiological Science and Technology. The measurements of absolute diffraction efficiencies were performed as a part of the PF synchrotron radiation joint experiment of “Development of low incidence angle and high efficiency diffraction gratings in extreme ultraviolet region,” (2016G144, April 2016- March 2018).

References

* koike.masato@qst.go.jp