AR-NW10A/2017G076

水分解用チタン酸ストロンチウム光触媒に担持された ロジウムクロム複合酸化物助触媒のオペランド XAFS 解析

Operando XAFS analysis of a rhodium-chromium oxide cocatalyst loaded on a strontium titanate photocatalyst for water splitting

久富隆史¹,吉田真明²,朝倉清高³,Hao Lyu¹,東智弘¹,片山正士¹,堂免一成^{1,*}

1東京大学,〒113-8656 東京都文京区本郷 7-3-1

2慶應義塾大学,〒223-8522 神奈川県横浜市港北区日吉 3-14-1

³北海道大学, 〒001-0021 札幌市北区北 21 条西 10 丁目

Takashi Hisatomi,¹ Masaaki Yoshida,² Kiyotaka Asakura,³ Hao Lyu,¹ Tomohiro Higashi,¹ Masao Katayama,¹ Kazunari Domen^{1,*}

¹The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 305-0801, Japan

²Keio University, 3-14-1 Hoyoshi, Kohoku-ku, Yokohama-shi, Kanagawa, 223-8522, Japan

³Hokkaido University, N21W10, Kita-Ward Sapporo 001-0021 Japan

1 <u>はじめに</u>

Alをドーピングした SrTiO3 (SrTiO3:Al) に対して ロジウムクロム複合酸化物(RhCrO_x)を助触媒とし て担持した粉末光触媒(RhCrO_x/SrTiO₃:Al)は、365 nm の紫外光照射下で 56%の見かけの量子効率で水 を水素と酸素に分解できる[1]。また、 RhCrO_x/SrTiO₃:Al をシリカ微粒子と混合してガラス 基板上に固定化した光触媒シートは粉末懸濁液と同 程度の活性を示す[1]。光触媒パネルは容易に交換可 能、懸濁が不要、水の供給は 1 mm 程度の厚さの薄 層状で十分といった特徴を有するため、従来の粉末 懸濁系と比べて大面積展開に適している。しかし、 RhCrO_x/SrTiO₃:Al 光触媒シートは減圧下では数日間 にわたって安定な水分解活性を示すのに対し、常圧 下・大強度の光照射下では数時間の時間スケールで 顕著に活性が劣化する。そのため、実用反応条件下 に特有の活性劣化機構が存在することが示唆されて いる。

高い量子収率で水を分解するためには、光触媒に RhCrO_x 助触媒を担持することが必要である。Rh 成 分は水素生成反応に対して高い活性を示すが、金属 Rh は酸素還元反応や水素と酸素から水を生成する 逆反応に対しても活性を示す。ここで、Cr 成分が共 存すると、水溶液中で分子篩として機能して酸素分 子の接近を阻止するために逆反応が抑制される。そ のため、RhCrO_x助触媒は水素生成反応に対して高選 択性でありかつ高活性を示す。このことを考慮する と、上記の光触媒活性劣化機構には RhCrO_x助触媒 成分の性質の変化、例えば Rh 成分の金属への還元 に伴う逆反応の促進等の関与が考えられる。

最近になり、RhCrO_x/SrTiO₃:Al に酸化コバルト種 (CoO_y)を光電着法で共担持することで、光触媒の 耐久性[1]が改善されることが見出されている。 CoO_yの共担持により光触媒活性が安定化する理由と して、CoO_yが正孔を捕捉して酸素生成活性点として 機能するために、RhCrO_x中の Cr 成分の酸化・溶出 を抑制していることが想定される。上記の背景を鑑 み、本研究では SrTiO₃:Al 光触媒に担持された RhCrO_x助触媒成分の価数や微細構造の変化と活性劣 化挙動との相関をオペランド XAFS により解析した。

2 実験

既報に基づき RhCrO_x/SrTiO₃:Al、及び RhCrO_x/SrTiO₃:Al に対して CoO_yが共担持された SrTiO₃:Al (CoO_y/RhCrO_x/SrTiO₃:Al)の粉末を調製し た[1]。試験管の側面に穴をあけてカプトン膜を張り 付けてチューブ型のセルを作製した。これに、 RhCrO_x/SrTiO₃:Al または CoO_y/RhCrO_x/SrTiO₃:Al の粉 末と蒸留水を入れ、スターラーで強く撹拌した。オ ペランド XAFS 測定は、NW10A にて実施した。Xe ランプを用いて紫外光を照射しながら、19 素子半導 体検出器を用いて、蛍光法で Rh-K 殻 XAFS を測定 した。参照試料として、Rh、Rh₂O₃、RhCrO_x、RhO₂ を透過法で測定した。

3 結果および考察

図1に暗中、0.5時間、及び15時間光照射後の RhCrO_x/SrTiO₃:Al粉末懸濁液のRh-K 殻 XANESスペ クトルとフーリエ変換後のEXAFS振動を示す。 RhCrO_x/SrTiO₃:Al 懸濁液は暗中では酸化物に帰属可 能なEXAFS振動を示した。XANESスペクトルの Rh-K 殻吸収端波長から、Rh種はRhCrO_x、すなわち 3価の酸化物種として存在していることがわかった。 15時間の光照射中、水分解活性が低下していく様子 が観察されたが、Rh種の状態には変化が見られな かった。CoO_y/RhCrO_x/SrTiO₃:Alを用いた場合には、 水分解活性の低下は顕著に抑制されたが、 RhCrO_x/SrTiO₃:Alの場合と同様に、Rh種は暗中・光 照射下を問わず3価の酸化物種として存在していた。

図 1 : (a) Rh、(b) RhCrO_x、(c) RhO₂、(d) RhCrO_x/SrTiO₃:Al 懸 濁 液 (暗 中) 、(e) RhCrO_x/SrTiO₃:Al 懸 濁 液 (30 分 光 照 射) 、(f) RhCrO_x/SrTiO₃:Al 懸濁液 (15 時間光照射)の Rh-K 殻 XANES スペクトルとフーリエ変換後の EXAFS 振動。

4 <u>まとめ</u>

光触媒反応中に RhCrO_x助触媒中の Rh 成分が金属 Rh に還元されることはなく、バルクの Rh 種の状態 は光触媒の失活とは相関がないことがわかった。た だし、XAFS により得られる情報は RhCrO_x助触媒バ ルクに関するものであるため、表面の状態変化につ いては別の手法で検討していく必要がある。

謝辞

オペランド XAFS 測定用セルの構造に関して、東 北大学加藤英樹博士にご助言いただいた。

参考文献

[1] Y. Goto et al., Joule 2, 509 (2018).

* domen@chemsys.t.u-tokyo.ac.jp