Photocatalytic Activity of Anatase and Rutile TiO$_2$ Surfaces and Its Correlation with Lifetime of Photoexcited Carriers

Kenichi OZAWA1,*, Susumu YAMAMOTO2, Ryu YUKAWA3, Ro-Ya Liu4, Naoya TERASHIMA5, Yuto NATSUI6, Hiroo KATO5, Kazuhiko MASE3,6, and Iwao MATSUDA2

1 Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
2 Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
3 Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki 305-0801, Japan
4 Institute of Physics, Academia Sinica, Taipei City 11574, Taiwan
5 Department of Advanced Physics, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
6 SOKENDAI (The Graduate University for Advanced Studies), Tsukuba, Ibaraki 305-0801, Japan

1 Introduction

One of many interesting aspects that TiO$_2$ photocatalysts exhibit is a morphology dependence of the photocatalytic activity; anatase TiO$_2$ (a-TiO$_2$) generally shows a higher activity than rutile TiO$_2$ (r-TiO$_2$). On the other hand, it has also been known that the TiO$_2$ photocatalytic activity depends on the orientation of the crystal surfaces. Although several mechanisms such as a surface-dependent redox potential, anisotropic diffusion of the carriers, etc. have been proposed as a possible origin of the orientation dependence, none of them explains comprehensively the phenomenon. In the present study, we systematically assessed the photocatalytic activity and photoexcited carrier lifetime on single-crystal a-TiO$_2$(101) and (001) surfaces and r-TiO$_2$(110), (001), (011), and (100) surfaces by X-ray photoelectron spectroscopy (XPS) and time-resolved XPS (TRXPS) and verified the activity-lifetime relation [1].

2 Experimental

The photocatalytic activity was evaluated by a rate constant of a photocatalytic decomposition of acetic acid. Acetic acid adsors in the form of acetate, and the rate of the photocatalytic decomposition of acetate was estimated from a decreasing rate of the C 1s XPS peak intensity while the ultraviolet (UV) laser with an energy of 3.31 eV was irradiated. The carrier lifetime was determined from a time evaluation of the UV-induced surface photovoltage (SPV). The SPV resulted in the shift of the valence and core levels of TiO$_2$. We examined the SPV via a shift of the Ti 2p level. The measurements were done at BL-13B of PF (XPS) and BL07LSU of SPring-8 (TRXPS).

3 Results and Discussion

The intensity of the C 1s peak of adsorbed acetate decreases exponentially upon irradiation of the UV light with a time constant τ_{ph} of 370 min on r-TiO$_2$(110) (Fig. 1). Since the reciprocal of τ_{ph} is a rate constant k_{ph}, k_{ph} on r-TiO$_2$(110) is evaluated to be 2.7×10^{-3} min$^{-1}$. This is the largest rate constant among all surfaces examined in the present study. k_{ph} on a-TiO$_2$(101) and (001) are 2.1×10^{-3} min$^{-1}$ and 1.7×10^{-3} min$^{-1}$, respectively, while r-TiO$_2$ (011) and (001) are inactive with $k_{ph} = 0$ min$^{-1}$.

Regarding the carrier lifetime, we examined four TiO$_2$ surfaces [r-TiO$_2$(110), r-TiO$_2$(011), a-TiO$_2$(001), and sputtered r-TiO$_2$(110)] without adsorbed acetate [2]. The determined lifetimes were converted to barrier height-corrected lifetimes so as to reproduce the lifetimes on the acetate-saturated surfaces; they are 450 ns, 360 ns, and 7 ns for r-TiO$_2$(110), a-TiO$_2$(001), and r-TiO$_2$(011), respectively.

The lifetime is found to be proportional to k_{ph}. A plot of k_{ph} against the lifetime gives a linear and positive straight line (Fig. 2). This correlation indicates that the carrier lifetime should be a key factor to understand various properties of TiO$_2$ photocatalysis, including the orientation-dependent activity.

* ozawa.k.ab@m.titech.ac.jp