XAFS Characterization of Ru-MO_x Nanoparticles Transformed from a Grafted Ru₁₂M Porphyrin Complex on SiO₂

Satoshi MURATSUGU*¹, Atsuki YAMAGUCHI¹, Gen-ichi YOKOTA¹, Tomoaki MAENO,¹ Mizuki TADA^{1,2}

¹ Department of Chemistry, Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan. ² RCMS & IRCCS, Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan.

1 Introduction

Ru-MO_x nanoparticles were prepared by the grafting of a Ru₁₂M porphyrin complex [1-M, {Ru₃O(CH₃COO)₆(Py)₂}₄ {M(C₄₀H₂₄N₈)}] (M = Cu, Ni, Zn) on a pyridine-functionalized SiO₂ surface, the stacking of SiO₂ matrix overlayers, and hydrogenation at 873 K.^[1] The local coordination structures of the prepared Ru-MO_x nanoparticles were investigated by Ru and M Kedge XAFS. The 3d metal atoms at the central position of the Ru₁₂M porphyrin complex showed great influence on the structures and catalytic performance of the Ru nanoparticles.^[1]

2 Experiment

Ru and M (M = Cu, Ni, Zn) K-edge XAFS of 1-M, SiO_2 -supported $Ru_{12}M$ complex (2-M), SiO_2 -matrix overlayers-stacked Ru₁₂M complex (3-M), and SiO₂supported Ru-MO_x nanocluster (4-M, only Ru K-edge) were measured in a transmission mode at 20 K at the NW10A station with a Si(311) double-crystal monochromator, and at the BL-12C station with a Si(111) double-crystal monochromator, respectively. M K-edge XAFS of 4-M was measured in a fluorescence mode at 20 K at the BL-12C station with a Si(111) double-crystal monochromator and MSSD. EXAFS spectra were analyzed using ATHENA and ARTEMIS programs. k^3 -Weighted EXAFS oscillations were Fourier transformed into R-space, and curve-fitting analysis was performed in R-space with coordination number (CN), interatomic distance (R), Debye-Waller factor (σ^2), and correction-ofedge energy (ΔE_0). Phase shifts and backscattering amplitudes were calculated by the FEFF8 code.

3 Results and Discussion

The local coordination structures of 1-M, 2-M, and 3-M were examined by Ru and M (M = Cu, Ni, Zn) K-edge EXAFS analysis, whose k^3 -weighted EXAFS Fourier transforms are shown in Figure 1(A) and 1(B). The local coordination structures of the supported Ru₁₂M porphyrin complex on 2-M and 3-M were similar to 1-M, indicating that the structure of 1-M did not decompose during the attachment. The Ru K-edge EXAFS of 4-M (Figure 1(A)) exhibited a new peak attributed and curve-fitted to Ru-Ru bond. The small CN value indicated that the size of Ru nanocluster was very small (ca. 0.8~1.5 nm from STEM analyses), and the bond length suggested that the most Ru species were reduced on 4-M. However, the degree of reduction was dependent on M: 4-Cu was the most oxidized compared with 4-Ni and 4-Zn from Ru K-edge XANES. The M K-edge EXAFS of **4-M** exhibited the existence of Cu–O, Ni–O, and Zn–O coordination (Figure 1(B)), suggesting the formation of MO_x species, respectively.

Figure. 1: (A) k^3 -Weighted Ru K-edge EXAFS Fourier transforms of **1-M**, **2-M**, **3-M**, and **4-M**. (B) k^3 -Weighted (1) Cu, (2) Ni, (3) Zn K-edge EXAFS Fourier transforms of **1-M**, **2-M**, **3-M**, and **4-M**.

4-Cu exhibited considerable activity in acetophenone hydrogenation (93% conv. (6 h)) compared with **4-Ni** (13%) and **4-Zn** (40%). The major product was cyclohexyl methyl ketone, indicating that the aromatic ring was reduced more selectively than C=O. The order of catalytic activity would have a positive correlation to that of the oxidation degree of Ru nanoparticles.

References

- S. Muratsugu, A. Yamaguchi, G. Yokota, T. Maeno, M. Tada, *Chem. Commun.* 2018, *54*, 4842–4845.
- * smuratsugu@chem.nagoya-u.ac.jp