## XAFS Characterization of High-Loaded, Size-Regulated Pt Nanoparticles Prepared from Pt<sub>4</sub> Complex and Polymer on Carbon Support

Satoshi MURATSUGU\*<sup>1</sup>, Kentaro ICHIHASHI<sup>1</sup>, Mizuki TADA<sup>1,2</sup>

<sup>1</sup> Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.

<sup>2</sup> Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan.

## 1 Introduction

succeeded in preparing size-regulated We Pt nanoparticles from carbon-attached Pt tetranuclear (Pt<sub>4</sub>) complex precursors (Pt loading: maximum 4 wt%) and organic polymer matrix overlayers and demonstrating the durability of Pt nanoparticle catalyst on organic reactions (e.g. N-alkylation reaction).<sup>[1]</sup> We next investigated a method to prepare size-regulated Pt nanoparticle catalyst to increase Pt loading for electrocatalyst. A newly prepared Pt<sub>4</sub> complex was polymerized together with polymer precursor under the presence of multi-walled carbon nanotubes (MWCNTs), and successive reduction yielded size-regulated Pt nanoparticles with high Pt loading. The oxidation states and the local coordination structures of the Pt<sub>4</sub> complex and MWCNT-supported Pt nanoparticle were investigated by Pt L<sub>III</sub>-edge XAFS.

## 2 Experimental

A newly prepared  $Pt_4$  complex (1) and a Pt nanoparticle rsample after reduction (A) were prepared, respectively.

Pt L<sub>III</sub>-edge XAFS was measured in a transmission mode at 20 K at the BL-12C station with a Si(111) double-crystal monochromator. Ionization chambers filled with pure N<sub>2</sub> and pure Ar were used to monitor incident and transmitted X-rays, respectively. EXAFS spectra were analysed using ATHENA and ARTEMIS programs.  $k^3$ -Weighted EXAFS oscillations were Fourier transformed into *R*-space, and curve-fitting analysis was performed in *R*-space with coordination number (CN), interatomic distance (*R*), Debye-Waller factor ( $\sigma^2$ ), and correction-of-edge energy ( $\Delta E_0$ ). Phase shifts and backscattering amplitudes were calculated by the FEFF8 code.

## 3 Results and Discussion

The local coordination structures of the Pt<sub>4</sub> complex and Pt nanoparticles were analyzed by Pt L<sub>III</sub>-edge EXAFS (Figure 1). 1 had Pt-Pt bond at 0.250  $\pm$  0.001 nm (Coordination number (CN): 2.3  $\pm$  0.3) and two Pt-O bonds at 0.200  $\pm$  0.002 nm (CN: 2.3  $\pm$  0.6) and 0.219  $\pm$ 0.002 nm (CN: 1.6  $\pm$  0.6), which were very similar to the Pt<sub>4</sub>(CH<sub>3</sub>COO)<sub>8</sub> complex.

The bond distances of the Pt-Pt coordination in **A** after the reduction were fitted as  $0.275 \pm 0.001$  (CN =  $4.0 \pm$ 1.0), whose value was identical to Pt<sup>0</sup> foil ( $R = 0.277 \pm$ 0.001). This result indicates that the Pt species was reduced to ca. zero. The white line peak of Pt L<sub>III</sub>-edge XANES of **A** was decreased, indicated that the Pt oxidation stare of was reduced to ca. zero, supporting the EXAFS data. Two contributions from Pt-C/O (CN =  $0.6 \pm 0.5$ ,  $R = 0.205 \pm 0.003$  nm) and Pt-O/N (CN =  $0.5 \pm 0.4$ ,  $R = 0.219 \pm 0.003$  nm) were observed. TEM image analyses of **A** exhibited small Pt nanoparticles of 1.1–1.6 nm with the narrow size distribution ( $0.3\sim0.5$  nm). The Pt loading of **A** was increased to ca. 12 wt. These results indicate that we succeeded in increasing Pt loading while keeping the small size of Pt nanoparticles.

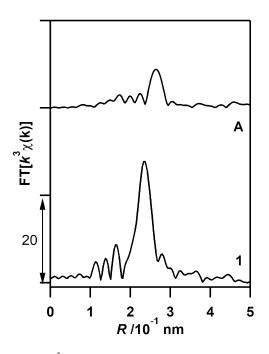



Figure. 1:  $k^3$ -Weighted Pt L<sub>III</sub>-edge EXAFS Fourier transforms of **1** and **A**.

[1] S. Muratsugu, S. Miyamoto, K. Sakamoto, K. Ichihashi, C.-K. Kim, N. Ishiguro, M. Tada, **2017**, *33*, 10271–10282.

\* smuratsugu@chem.nagoya-u.ac.jp