XAFS Characterization of Molecularly-Imprinted Ru Porphyrin Complex Catalysts for Cholesterol Epoxidation

Satoshi MURATSUGU^{*1}, Hiroshi BABA¹, Tatsuya TANIMOTO¹, Masahiro TASAKI¹, Yosuke TERAO¹, Mizuki TADA^{1,2}

¹ Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan.

² Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan.

1 Introduction

A molecularly imprinted Ru porphyrin complex catalysts was prepared on a SiO₂ surface from a SiO₂-supported Ru porphyrin complex with SiO₂-matrix overlayers.^[1] The local coordination structures of the prepared molecularly imprinted Ru porphyrin complex catalysts were investigated by Ru K-edge XAFS. The chemoselective epoxidation of cholesterol derivatives was achieved on the molecularly imprinted Ru complex catalyst.^[1]

2 Experiment

The molecularly imprinted Ru catalyst was prepared in a step-by-step manner: (A) The attachment of a Ru porphyrin complex (1) on a SiO₂ surface to produce (2), (B) the removal of CO ligand to produce (3), (C) the coordination of a template to produce (4), (D) the stacking of SiO₂-matrix overlayers to produce (5), and (E) the removal of the template to produce the molecularly imprinted Ru catalyst (6).

Ru K-edge XAFS of 1, 2, 3, and 4 were measured in a transmission mode, and that of 5 and 6 were measured in a fluorescence mode at 20 K at the NW10A station with a Si(311) double-crystal monochromator and MSSD. EXAFS spectra were analyzed using ATHENA and ARTEMIS programs. k^3 -Weighted EXAFS oscillations were Fourier transformed into *R*-space, and curve-fitting analysis was performed in *R*-space with coordination number (CN), interatomic distance (*R*), Debye-Waller factor (σ^2), and correction-of-edge energy (ΔE_0). Phase shifts and backscattering amplitudes were calculated by the FEFF8.

3 Results and Discussion

The local coordination structures of the molecularly imprinted Ru porphyrin complexes were analyzed by Ru K-edge XANES and EXAFS (Figure 1). The shape of Ru K-edge XANES of 1, 2, 3, 4, 5, and 6 were almost similar, indicating that the oxidation state of Ru in Ru porphyrin was almost identical. The Ru K-edge XANES of The curve-fitted CN and *R* for Ru-N (porphyrin) bond of 1, 2, 3, 4, 5, and 6 were 0.205 ± 0.001 nm (CN = 4.3 ± 0.9), 0.205 ± 0.001 nm (CN = 3.7 ± 1.1), 0.206 ± 0.001 nm (CN = 3.2 ± 0.6), 0.204 ± 0.001 nm (CN = 4.2 ± 0.8), 0.206 ± 0.001 nm (CN = 3.8 ± 1.0), and 0.207 ± 0.001 nm (CN = 3.2 ± 0.4), respectively, indicating the maintenance of Ru porphyrin structure. This was also supported with the results of ¹³C SS NMR and UV/vis spectra. The existence of Ru-N (template) bond was also observed on **4** and **5**, whose CN and *R* were 0.184 ± 0.003 nm (CN = 0.9 ± 0.7), 0.186 ± 0.006 nm (CN = 0.4 ± 0.6), respectively.

High chemoselectivity for the $C_5=C_6$ epoxidation of cholesterol derivatives without protecting 3-position OH group was achieved on the molecularly imprinted Ru porphyrin complex catalyst (6). The yield of $C_5=C_6$ epoxide for cholesterol epoxidation was increased to be 95% on 6 compared to that on 1 (30%) and on 2 (23%).

Figure. 1: k^3 -Weighted Ru K-edge EXAFS Fourier transforms of **1**, **2**, **3**, **4**, **5**, and **6** ($k = 30-160 \text{ nm}^{-1}$).

References

S. Muratsugu, H. Baba, T. Tanimoto, K. Sawaguchi, S. Ikemoto, M. Tasaki, Y. Terao, M. Tada, *Chem. Commun.* 2018, *54*, 5114 - 5117.

* smuratsugu@chem.nagoya-u.ac.jp