Exchange of Tetrapositive Cations into Zeolites for Zeolite-Based Inorganic scintillators. Crystal Structures and Scintillation Properties of Hf$^{4+}$- and Zr$^{4+}$-Containing LTA

Joon Young Kim1, Hyeon Seung Lim1, Gi Beom Park1, So Yeon Yoon1, Nam Ho Heo1,*, and Karl Seff2

1Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Korea
2Department of Chemistry, University of Hawaii, 2545 The Mall, Honolulu, Hawaii, 96822, U. S. A.

1 Introduction
Numerous new inorganic scintillator materials have appeared in the last several decades. They have been studied for use in precision calorimetry in high-energy physics, medical imaging, and homeland security. Recently, Saeki et al. completed an extensive and comparative study of the scintillation properties of Cs$_2$ZrCl$_6$ and Cs$_2$HfCl$_6$ crystals.[1] High atomic number ions such as Zr$^{4+}$ and Hf$^{4+}$ are important for inorganic scintillation because they serve as effective X-ray antenna by absorbing X-ray photons to produce fast electrons by the photoelectric effect.[2] Zeolites containing these ions might be exceptional and tunable scintillators. Unfortunately, it is difficult to introduce tetrapositive cations into zeolites by conventional liquid-phase ion-exchange (LPIE). Because the vapor pressures of HfCl$_4$ and ZrCl$_4$ are significant at a moderate temperature, it was hoped that Hf$^{4+}$ and Zr$^{4+}$ could be introduced into zeolites by the vapor-phase ion-exchange (VPIE) method.

2 Experiment
Fully dehydrated Tl$_{12}$-A and Cs$_7$Na$_5$-A were treated either with HfCl$_4$ (g, 7.9 \times 103 Pa) (crystals a and b) or with ZrCl$_4$ (g, 3.7 \times 103 Pa) (crystals c and d) at 523 K under anhydrous conditions. The product crystals were all milky white. Their crystal structures were determined by single-crystal crystallography using synchrotron X-radiation and their compositions were confirmed by SEM-EDX analyses. Their structures were refined in the space group $Pm\bar{3}m$ ($a = 12.065(2)$, $12.248(2)$, $12.215(1)$, and $12.230(1)$ Å) with all unique data to the final error indices $R_1 = 0.072$, 0.049, 0.47, and 0.069, respectively.

Their luminescence properties upon X-irradiation were explored. CCD images of the four crystals were obtained using synchrotron X-radiation at the Pohang Accelerator Laboratory (Figure 1).

The X-ray induced luminescence spectra of the dehydrated zeolites Hf$_4$Cl$_{12}$, Tl$_{12}$-A, Hf$_4$Cl$_{12}$, Cs$_7$Na$_5$-A, Zr$_4$Cl$_{12}$, Tl$_{12}$-A, and Zr$_4$Cl$_{12}$, Cs$_7$Na$_5$-A are broad bands ranging from 300 to 720 peaking at 390, 410, 500, and 495 nm, respectively (Figure 2c). Although the X-ray induced luminescence spectral shapes and peak positions for the M$_4$Cl$_{12}$, Tl$_{12}$-A and M$_4$Cl$_{12}$, Cs$_7$Na$_5$-A are similar, their decay patterns are quite different. The four zeolites, M$_4$Cl$_{12}$, Tl$_{12}$-A and M$_4$Cl$_{12}$, Cs$_7$Na$_5$-A, appear to luminesce by different mechanisms. Four possible mechanisms are recognized for their scintillation processes. They are (1) self-trapped exciton luminescence of MCl$_6^{2-}$, (2) migration of charge carriers (hot electrons and holes) to activator ions, (3) luminescence through Na$^+$-perturbed excitons, and (4) secondary energy transfer by UV radiation, arising from...
charge transfer from M^{4+} to O^{2-}, to surrounding luminescence centers.

![Fig. 2: (a) HfCl$_6^{2-}$ in Hf,Cl,Tl-A, (b) Cs$_3$MCl$_6^{9+}$ continua in M,Cl,Cs,Na-A, and (c) X-ray luminescence spectra and scintillation decay times of Hf$^{4+}$ and Zr$^{4+}$-containing LTA.](image)

The integrated light yields observed for M,Cl,Tl-A and M,Cl,Cs,Na-A powders are about 20% to 93% that of bismuth germanate, a commercially available scintillator whose light yield is well documented.[6] Under the same measurement conditions, Tl$^+$- and Cs$^+$,Na$^+$-exchanged zeolite LTA showed no radioluminescence.

Acknowledgement

We gratefully acknowledge the Photon Factory, High Energy Accelerator Research Organization, KEK, Tsukuba, Japan for the use of their synchrotron facilities including diffractometer and computing systems.

References

* nhheo@knu.ac.kr