Ti₂O₃薄膜の電子状態 Electronic structures of Ti₂O₃ films

吉松公平^{1,*}, 黒川輝¹, 大友明^{1,2} ¹東京工業大学物質理工学院 〒152-8552 東京都目黒区大岡山 2-12-1 ²東工大元素戦略, 〒226-8503 神奈川県横浜市緑区長津田町 4259 Kohei YOSHIMATSU^{1,*} Hikaru KUROKAWA¹, and Akira OHTOMO^{1,2} ¹Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan ²MCES, 4259 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan

1 はじめに

コランダム型構造を持つ Ti₂O₃は 450 K 付近で温度 幅の広い金属絶縁体転移を示す。二酸化バナジウム (VO₂) と異なり、電子相転移に構造相転移を伴わ ず、コランダム型構造のまま結晶の c 軸長と a 軸長 の比 c/a が大きく変化する[1]。高温では c 軸長の伸 長で Ti³⁺-Ti³⁺二量体が不安定し、金属状態となる。 このように Ti₂O₃は結晶格子と電子相が密接に関係す る系であり、エピタキシャル応力による格子変形を 利用した電子相制御が期待できる。本研究では同様 にコランダム型構造を持つサファイア(α -Al₂O₃)基板 上に Ti₂O₃薄膜を形成し、放射光光電子分光と X 線 吸収分光による電子状態観測を行った。

2 実験

 Ti_2O_3 薄膜はパルスレーザ堆積(PLD)法を用いて a 面および c 面 α -Al₂O₃基板上に作製した。薄膜で Ti^{3+} 状態を実現するため、ターゲットにも Ti_2O_3 多結晶 体を用いた。PLD チャンバーには不活性の Ar ガス を分圧 10^{-3} Torr で導入し、残留ガスによる酸化を防 いだ。

図 1: Ti₂O₃薄膜の Ti *L* 端 X 線吸収スペクトル。比較 のため、SrTiO₃(Ti⁴⁺)とバルク Ti₂O₃(Ti³⁺)の X 線吸収ス ペクトルも同様に示す[2]。

薄膜合成時の基板温度は 950°C に設定した。X 線 回折測定から合成した薄膜の構造を評価し、基板と 同様の配向を示す単結晶 Ti₂O₃ 薄膜が得られている ことを確認した。

光電子分光と X 線吸収分光測定は、BL2A に常設 された光電子分光測定装置を用いて室温で行った。 Ti2p内殻スペクトルはhv=800 eVの軟X線を用い、 エネルギー分解能はおよそ 200 meV とした。Ti L 端 の X 線吸収分光測定は全電子収量法にて行った。電 子分光測定前に準備槽にてArスパッタで薄膜を削り、 表面に形成された酸化層を取り除いた。

図 2: Ti₂O₃薄膜の Ti 2p 内殻スペクトル。比較のため、SrTiO₃(Ti⁴⁺)とバルク Ti₂O₃(Ti³⁺)の Ti 2p 内殻スペクトルも同様に示す[2]。

図 1 に a 面および c 面 α -Al₂O₃ 基板上に作製した Ti₂O₃ 薄膜の Ti L 端 X 線吸収スペクトルを示す。Ar スパッタ前は Ti⁴⁺に対応する 4 つのピークが観測さ れ、表面酸化層の影響を強く受けているとわかる。 Ar スパッタを行うとスペクトルが大きく変化し、 Ti³⁺に相当する形状を取る。スパッタ後にもhv = 458eV に 小 さ な ピーク が 見 ら れ、Ti⁴⁺(SrTiO₃)や Ti³⁺(Ti₂O₃)のリファレンスとの比較から Ti⁴⁺に由来す ると判断できる。この Ti⁴⁺が表面酸化層によるもの か薄膜中の酸素過剰に由来するかを明らかにするに はさらなる実験が必必要である。これらの結果から、 わずかな Ti⁴⁺成分が観測されたものの Ar スパッタに よる表面酸化層の除去が非常に有効である。

図 2 に a 面および c 面α-Al₂O₃ 基板上に作製した Ti₂O₃薄膜の Ti 2p 内殻スペクトルを示す。吸収スペ クトルと同様に Ar スパッタ前は Ti⁴⁺のスペクトル形 状を示すが、Ar スパッタ後には Ti₂O₃のリファレン スと良く似た形状を持つことがわかる。Ti₂O₃のTi 2p 内殻スペクトル形状は複雑で、同様に Ti³⁺を持つペ ロブスカイト型 Ti 酸化物のそれと大きく異なってい る[3]。理論計算によると、Ti₂O₃の Ti 2p 内殻スペク トルは Ti³⁺-Ti³⁺の二量体を反映した Ti₂O₉クラスター により初めて再現できると報告されている[2,4,5]。 Ti₂O₃薄膜でバルクと同等のスペクトル形状が得られ たことから、薄膜でも Ti³⁺-Ti³⁺の二量体形成が示唆 される。一方で、バルクと比較して全体的にピーク 形状が曖昧なことから、酸素の選択スパッタによる Ti³⁺-Ti³⁺二量体の不安定化が示唆される。よって今後 は大気暴露することなく薄膜を持ち込み、電子分光 測定を行うことで薄膜本来の電子状態の観測を計画 している。

4 <u>まとめ</u>

本研究ではパルスレーザ堆積法で作製した Ti₂O₃薄 膜の放射光光電子分光と X 線吸収分光測定を行った。 測定前に薄膜を Ar スパッタすることで、表面酸化 層の影響のないスペクトルを得ることができた。そ の結果、Ti 2p 内殻、Ti L 端から Ti³⁺に由来する明瞭 なスペクトルが観測された。特に、Ti 2p 内殻からは バルク同様の Ti³⁺-Ti³⁺二量体に起因する電子状態が 得られた。

参考文献

- [1] C. N. R. Rao et al., Phys. Lett. 27A, 271 (1968).
- [2] C. F. Chang et al., Phys. Rev. X 8, 021004 (2018).
- [3] K. Mizokawa et al., Phys. Rev. B 54, 8446 (1996).
- [4] A. Tanaka, J. Phys. Soc. Jpn. 73, 152 (2004).
- [5] H. Sato *et al.*, J. Phys. Soc. Jpn. 75, 053702 (2006).
- 成果
- K. Yoshimatsu, H. Kurokawa, K. Horiba, H. Kumigashira, and A. Ohtomo, "Large anisotropy in conductivity of Ti₂O₃ films" APL Mater. 6, 101101 (2018).
- [2] K. Yoshimatsu, O. Sakata, and A. Ohtomo, "Superconductivity in Ti₄O₇ and γ-Ti₃O₅ films" Scientific Reports 7, 12544 (2017).
- [3] H. Kurokawa, K. Yoshimatsu, O. Sakata, and A. Ohtomo, "Effects of phase fraction on superconductivity of low-valence eutectic titanate films" J. Appl. Phys. 122, 055302 (2017).

* kohei.yoshimatsu.c6@tohoku.ac.jp