X-ray diffraction experiments in quadrupolar Kondo candidate PrTi₂Al₂₀ and PrV₂Al₂₀

Daisuke Okuyama¹, Masaki Tsujimoto², Hajime Sagayama³, Yasuyuki Shimura², Akito Sakai², Atsushi Magata², Satoru Nakatsuji², and Taku J. Sato¹

¹IMRAM, Tohoku University, Sendai 980-8577, Japan

²ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

³CMRC and PF, IMSS, KEK, Tsukuba, Ibaraki 305-0801, Japan

Crystal structure analyses in PrT_2Al_{20} (Tr = Ti and V) has been carried out. We found that Pr-Al cage for PrV_2Al_{20} is anisotropically deformed from sphere, which modify the crystalline-electric-field levels of Pr^{3+} . The information would provide a clue to understand the anomalous properties in PrT_2Al_{20} .

1 Introduction

Non-magnetic $PrTr_2X_{20}$ (Tr = transition metal, X = Al and Zn) compounds have been extensively studied as candidates for the two channel (quadrupolar) Kondo effect. In PrV₂Al₂₀, magnetic susceptibility and electric resistivity show anomalous $T^{1/2}$ behavior at low temperatures, which is in good accordance with the theoretical prediction for the two channel Anderson lattice model [1]. In stark contrast, $PrTi_2Al_{20}$ shows T^2 behavior below ~ 20 K. They show quite different ordering behavior. PrTi₂Al₂₀ shows ferro-quadrupolar order at $T \sim 2$ K [2]. In contrast, PrV_2Al_{20} shows successive non-magnetic anomalies at much lower temperatures around 0.6 K, of which the origin is suggested to be antiferro-quadrupolar type [3]. The crystal-electric-field (CEF) levels of Pr³⁺ in PrTi₂Al₂₀ were determined as Γ_3 (quadrupolar- and octapolar-active ground state) - Γ_4 (5.61) - Γ_5 (9.30) - Γ_1 (13.5 meV), whereas it was not explored in PrV₂Al₂₀ [2]. The detailed knowledge on the crystal structures would provide a clue to understand the difference of the anomalous transport Thus, we reinvestigated crystal structure behavior. analysis of the $PrTr_2Al_{20}$.

2 Experiment

X-ray diffraction experiments were performed using single crystals with diameters of about 30 μ m on the BL-8A. The photon energy of the incident X-rays was tuned at 18 keV. X-ray beams were shaped into a square of 200 x 200 μ m² by a collimator. The intensity data were converted to the IFI-tables by using Rapid- Auto program, Rigaku. We used CrystalStructure program of Rigaku for analyzing the crystal structure from the IFI-table.

3 Results and Discussion

The crystal structure analyses for single crystals of $PrTi_2Al_{20}$ and PrV_2Al_{20} were performed. The comparisons between observed and calculated structure factors are shown in Fig. 1(a). The crystal structure consists of two Al-cages with individually capturing Pr and *Tr* atoms as shown in Fig. 1(b). The CEF *x* and *W* parameters were known as x = 0.25(1) and W = -1.53(3)

K for $PrTi_2AI_{20}$ [2]. Using the point charge calculation based on the refined structural parameters of Tr = Ti, we estimated the Al-charges that are consistent with the *x* and *W* parameters. The estimated Al-charges are +0.9 for Al(1) and +0.88 for Al(3). Next, we assumed that Alcharges estimated at Tr = Ti are also applied to Tr = V, and obtained $x \sim 0.41$ and $W \sim -2.1$ K using the point charge model based on the refined structural parameters for Tr = V. By these parameters, the CEF excited levels can be estimated as $\Gamma_4 \sim 5.6$, $\Gamma_5 \sim 11.1$, and $\Gamma_1 \sim 13.5$ meV for PrV_2AI_{20} . Detailed information is found in [4].

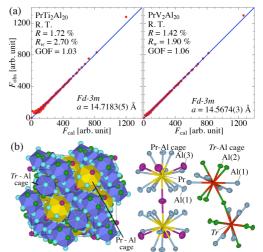


Fig. 1: (a) Observed (F_{obs}) and calculated (F_{cal}) structure factors for $PrTr_2Al_{20}$ (Tr = Ti and V). (b) Schematic of crystal structure of $PrTr_2Al_{20}$.

References

[1] A. Sakai and S. Nakatsuji, J. Phys. Soc. Jpn. 80, 063701 (2011).

[2] T. J. Sato, S. Ibuka, Y. Nambu, T. Yamazaki, T. Hong, A. Sakai, and S. Nakatsuji, Phys. Rev. B **86**, 184419 (2012).

[3] Y. Nakanishi, M. Taniguchi, M. M. Nakamura, J. Hasegawa, R. Ohyama, M. Nakamura, M. Yoshizawa, M. Tsujimoto, S. Nakatsuji, Physica B **536** 125 (2018).

[4] D. Okuyama et al., J. Phys. Soc. Jpn. 88, 015001(2019). *okudaisu@tohoku.ac.jp