BL-6C/2018G592

Bi_{2-x}Sb_xTe_{3-y}Se_yの蛍光X線ホログラフィー X-ray fluorescence holography of Bi_{2-x}Sb_xTe_{3-y}Se_y

江口律子^{1,*}, Tong He¹, Yang Xiaofan¹, Huan Li¹, 田口倫也¹, 後藤秀徳¹, 久保園芳博¹, 八方直久², 山口涼太², 細川伸也³, 尾崎ひかる⁴, 松本亮平⁴, 木村耕治⁴, 林好一⁴

□岡山大学異分野基礎科学研究所,〒700-8530岡山市北区津島中 3-1-1

²広島市立大学、〒731-3194 広島市安佐南区大塚東 3-4-1

³ 熊本大学, 〒860-8555 熊本市中央区黒髪 2-39-1

4名古屋工業大学,〒466-8555名古屋市昭和区御器所町

Ritsuko Eguchi^{1,*}, Tong HE¹, Yang Xiaofan¹, Huan Li¹, Tomoya Taguchi¹, Hidenori Goto¹,

Yoshihiro Kubozono¹, Naohisa Happo², Ryota Yamaguchi², Shinya Hosokawa³,

Hikaru Ozaki⁴, Ryohei Matsumoto⁴, Koji Kimura⁴, Kouichi Hayashi⁴

¹Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan

²Hiroshima City University, Hiroshima 731-3194, Japan

³Kumamoto University, Kumamoto 860-8555, Japan

⁴Nagoya Institute of Technology, Aichi 466-8555, Japan

1 <u>はじめに</u>

 $Bi_{2-x}Sb_xTe_{3-y}Se_y$ は、三次元トポロジカル絶縁体で ある。xの値を小さくするとフェルミ準位が低下し、 yの値を大きくするとDirac点が上昇することが角度 分解光電子分光(ARPES)の研究から明らかになっ ている [1]。我々は、 $Bi_{2-x}Sb_xTe_{3-y}Se_y$ (x = 0, 0.25, 0.5, 1.0; y = 1)の各試料において、圧力印加することによって超伝導を発現させることに成功している [2]。 また、圧力印可下の粉末 X線回折実験では格子定数 の圧力変化を観測しており、30 GPa までに 2 つの構 造相転移があることを見いだしている。

一方、これまでに我々のグループでは Ag ドープ Bi₂Se₃ (Ag_{0.05}Bi_{1.95}Se₃)の蛍光X線ホログラフィーの 実験を行っており、その結果からドープされた Ag 原子はBiサイトと置換してホールドーピングとなっ ていることを明らかにしている [3]。

本研究では、Bi₂Se₃と同様な物質群である Bi₂. xSb_xTe_{3-y}Se_yにおいて、Bi(L3 edge: 13.418 keV)、Se (K edge: 12.657 keV)付近の選択的な励起による蛍 光 X 線ホログラムを測定し、① Bi₂Se₃を基本骨格と したときのBi層へのSb原子の置換、Se層へのTe原 子の置換がなされているのか、② Bi_{2-x}Sb_xTe_{3-y}Se_yに Ag 原子などをドーピングした際に、ドーピングさ れた原子は Bi 層または Se 層へのどちらに置換され ているのか、③ 置換ではなく層間の空隙への挿入が 起こっていないか、④ これらの原子位置(置換ある いは挿入)が電子構造変化と比較して矛盾なく説明 できるのか、という点を議論し明らかにする。

2 実験

Bi_{2-x}Sb_xTe_{3-y}Se_y(x = 0; y = 1)単結晶の Se-Ka と Bi-La 蛍光 X 線ホログラフィー実験を、PF/KEK の実験ス テーション BL-6C で行なった。 温度は 100 K で、試 料を 2 軸で回転させて($\theta = 0 \sim 75^{\circ}$ ($\Delta \theta = 1^{\circ}$)、 $\phi = 0 \sim 360^{\circ}$ ($\Delta \phi = 0.25^{\circ}$))、 Se-Ka 蛍光(11.2. keV)と Bi-La 蛍光(10.8 keV)を円筒型グラファイ ト分光結晶で分光・集光し、シリコンドリフト検出 器(SDD)で1 測定点につき約 0.08 s の計数を行っ た。その結果、入射 X線のエネルギー 13.5 keV から 16.5 keV までを 0.5 keV 刻みで、それぞれ 7 本ずつの ホログラムを得ることができた。

3 <u>結果および考察</u>

入射 X 線のエネルギー 13.5 keV で測定した、 Bi₂Te₂Se の Se-Ka と Bi-La 蛍光X線ホログラムを図 1 (a)、(b)に示す。[001] 方位からの正射影となって おり、3回対称の定在波線パターンが観測されてい る。Se に比べ Bi の方が、そのパターンが弱く、Se よりも Bi 周辺の原子位置が乱れていることが予想さ れる。今後、詳細な解析を行う予定である。

図1:入射X線のエネルギー13.5 keV で測定した(a) Se-Kaと(b) Bi-La 蛍光X線ホログラム.

4 <u>まとめ</u>

今回の実験では、 $Bi_{2-x}Sb_xTe_{3-y}Se_y(x = 0; y = 1)$ の試料において、弱いながら Bi と Se サイト周りの3回対称の定在波線パターンを観測することができた。 今後 x を変化させた試料やドーピングした試料で測定を行って結果を比較する予定である。

参考文献

[1] T. Arakene et al. Nature Commun. 3, 636 (2012).

- [2] T. He *et al.* submitted.
- [3] T. He et al. Phys. Rev. B 97, 104503 (2018).

* eguchi-r@okayama-u.ac.jp