Transformation of Silver Site over TiO$_2$ Effectively Used on the Photocathode of Solar Cell

Kazuki Urushidate, Mao Yoshiba, and Yasuo Izumi

Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522, Japan

1 Introduction

High-voltage type solar cell (SC) as high as 2.11 V was recently reported using photocatalysts on both electrodes [1]. Water mediates the redox reactions on both electrodes, and it is essential how to collect light-excited electrons and transfer them to O$_2$ molecules on the photocathode. We applied O vacancy site of BiOCl [2,3] and silver nanoparticle dispersed on TiO$_2$ for the electron collect & transfer [4]. The transformation of Ag site on TiO$_2$ was tentatively investigated using Ag K-edge extended X-ray absorption fine structure (EXAFS), but the sample was as disk [4] not film on electrode. In this report, an Ag–TiO$_2$ film was formed on indium tin oxide (ITO)/Pyrex and the Ag site transformation was monitored by Ag K-edge EXAFS.

2 Experimental Section

Silver K-edge EXAFS spectra were measured at 290 K in the fluorescene mode in the Photon Factory on beamline NW10A [4]. A Si(3 1 1) double-crystal monochromator and a Pt-coated focusing cylindrical mirror were inserted into the X-ray beam path. Piezo transducer was used to detune the X-ray intensity to two thirds of the maximum to suppress higher harmonics. The Ag K-edge absorption energy was calibrated to 25516.5 eV [5] using the X-ray spectrum of a Ag metal foil.

A film of Ag (3.0 wt %)–TiO$_2$ photocatalyst (2.0 mg) was formed on an ITO/Pyrex glass plate and was measured using a Lytle detector. First, the sample was in air, then immersed in HCl aqueous solution of pH 2.0 under N$_2$ atmosphere using a sealable thin transparent plastic bag. Next, the sample in HCl aqueous solution was irradiated by UV–visible light from a 500-W xenon arc lamp (Ushio) at the beamline for 40 min. Finally, the light was turned off and the sample cell was purged with O$_2$, then with air.

Thus obtained XAFS data were analyzed using the XDAP software package. Multiple-shell curve-fit analyses were performed for the Fourier-filtered k^3-weighted EXAFS data in k-and R-space using empirical amplitude and phase-shift parameters extracted from the EXAFS data for Ag metal foil, Ag$_2$O, and AgCl powders. The interatomic distance (R) and its associated coordination number (N) for the Ag–Ag, Ag–O, and Ag–Cl pairs were set to 0.2889 nm with the N value of 12, 0.2044 nm with the N value of 2, and 0.2775 nm with the N value of 6.

3 Results and Discussion

Ag K-edge EXAFS spectra were measured under various conditions related to cathodic conditions in SC and were analyzed by curve fitting (Figure 1). For as-prepared Ag–TiO$_2$ film, the Fourier-filtered k^3-weighted EXAFS χ-function was fit with two shells of Ag–O and Ag–Ag at 0.2080 and 0.2850 nm. The associated N values were 2.6 and 0.41, respectively, demonstrating predominant Ag$_2$O phase. The latter contribution was regarded as inert metallic Ag nanoparticles formed on specific part on TiO$_2$ [4]. The ratio of inert Ag0 was significantly lower for film sample based on the N value (0.41) in comparison to 2.0 for disk sample measured under similar conditions [4].

![Figure 1](image.png)

Figure 1. The change of coordination number (N) for Ag–O, Ag–Cl, and Ag–Ag interatomic pair of Ag (3.0 wt %)–TiO$_2$ photocatalyst pasted on ITO/Pyrex electrode based on Ag K-edge EXAFS. Under air, in HCl aqueous solution and N$_2$, under irradiation of UV–visible light, and under dark and O$_2$ or air.

Next, the Ag–TiO$_2$ film on ITO/Pyrex plate was immersed in HCl solution under N$_2$ atmosphere. The N values based on curve fitting analysis became 0.2, 2.9, and 0.7 for Ag–O, Ag–Cl, and Ag–Ag at 0.2069, 0.2661, and 0.2875 nm, respectively. Thus, Ag$_2$O nanoparticles under air reacted with HCl to form AgCl. This reaction was confirmed also by cyclic voltammetry for disk sample [4]. In contrast, for film sample in this study, the N value for Ag–Ag pair increased from 0.41 to 0.7.
(Figure 1) while the value negligibly changed from 2.0 to 1.5 for disk sample [4]. We suspect the reduction from AgIICl to Ag0 (0.22 V @standard hydrogen electrode) by the defect site of TiO\textsubscript{2}.

Then, the film of Ag–TiO\textsubscript{2} photocatalyst was irradiated by UV–visible light. The N value for Ag–Ag dramatically increased to 9.8–12.4 (Figure 1) demonstrating photoreduction of AgIICl to Ag0 and possibly corresponding amount of water was oxidized to O\textsubscript{2}. The remained Ag–O and/or Ag–Cl coordination suggested Ag\textsubscript{2}O and/or AgCl core and reduced metallic Ag0 shell structure.

After the light was turned off, the N values for Ag–O, Ag–Cl, and Ag–Ag did not change either under O\textsubscript{2} (@82 min) or under air (@97 min), indicating the stability of Ag0 nanoparticles as film of Ag–TiO\textsubscript{2} over ITO electrode.

Acknowledgements

The authors are grateful for the financial supports from the Grant-in-Aid for Scientific Research C (17K05961) from Japan Society for the Promotion of Science.

References

* yizumi@faculty.chiba-u.jp