Electronic structures of perovskite-type strontium chromium oxyfluoride thin films

Akira CHIKAMATSU,^{1,*} Takahiro MARUYAMA,¹ Tsukasa KATAYAMA,¹ Yu SU,² Yoshihiro TSUJIMOTO,^{2,3} Kazunari YAMAURA,^{2,3} Miho KITAMURA,⁴ Koji HORIBA,⁴ Hiroshi KUMIGASHIRA,^{4,5} and Tetsuya HASEGAWA¹

¹ Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

² Research Center for Functional Materials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

³ Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo 060-0808, Japan

⁴ Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305–0801, Japan

⁵ Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980–8577, Japan

1 Introduction

Perovskite-type chromium oxides exhibit unique physical properties due to the strong Cr 3d–O 2pinteraction. A typical example is SrCrO₃ containing Cr⁴⁺ ($3d^2$), which exhibits antiferromagnetic metallic behaviors because its transport property lies in the crossover region between itinerant and localized carriers [1,2]. The physical properties of perovskite-type chromium oxides can be readily modified through topotactic fluorination because insertion or substitution of F⁻ ions provides additional holes or electrons to the Cr ions, respectively [3,4]. In this study, we investigated the electronic structures of strontium chromium oxyfluoride thin films by X-ray photoemission (XPS) and absorption spectroscopies (XAS), and discussed them in comparison with those of SrCrO_{2.8} and SrCrO₃ thin films.

2 Experiment

Precursor SrCrO_{2.8} thin films were deposited on LaAlO₃ (001) substrates by pulsed-laser deposition. The obtained SrCrO_{2.8} thin films were further subjected to fluorination using polyvinylidene fluoride at 250 °C for 12 h in Ar gas flow. Oxidized films were prepared by annealing the SrCrO_{2.8} precursor thin films at 250 °C for 2 h in air. The typical thickness of the films was ~50 nm.

Crystal structures of the films were investigated by Xray diffraction, and chemical compositions were evaluated by energy dispersive X-ray analysis. Cr 2p and valence band XPS spectra were measured at 300 K using a VG-SCIENTA SES-2002 electron-energy analyzer with an energy resolution of 300 meV at a photon energy of 1200 eV. The Fermi level of the samples was set as that of an *in situ* evaporated gold foil which was in electrical contact with the sample. The O *K*-edge XAS spectra were measured at 300 K by the total-electron-yield method.

3 Results and Discussion

In order to examine the changes of the valence numbers of Cr by the oxidation and fluorination of the Sr₂IrO₄ thin films, we performed Cr *L*-edge XAS measurements, as shown in Fig. 1. It is known that the shape of Cr *L*-edge XAS spectrum of Cr^{4+} is very different from that of Cr^{3+} and that the valence number of Cr can be roughly estimated from the linear combination of Cr^{4+} and Cr^{3+} XAS spectra [5]. As seen in Fig. 1, the positions of the highest L_3 and L_2 peaks (578.7 eV and 587 eV) of the oxidized film were almost the same as those of the SrCrO₃ reference, indicating that the oxidized film had Cr4+. Thus, we determined the chemical formula of the oxidized film as SrCrO₃. Note that the peak at ~582 eV was not observed in the oxidized film, which may be due to a change in Cr-O bond lengths associated with lattice strain and/or degraded crystallinity. On the other hand, the valence numbers of Cr in both precursor and fluorinated films were estimated to be 3.6 ± 0.1 by linearly combining the spectra of the oxidized film (Cr^{4+}) and LaCrO₃ reference [6] (Cr^{3+}). Assuming x + y = 3 in SrCrO_xF_y, the chemical composition of the fluorinated film can be estimated as SrCrO_{2.6}F_{0.4}. Note that our fluorinated film had a higher fluorine content than polycrystalline bulk sample, SrCrO_{2.8}F_{0.2} [4], probably reflecting a higher reactivity of thin films than bulk because of larger surface areas and smaller volumes.

Fig. 1: Cr *L*-edge XAS spectra of the SrCrO_{2.8} precursor film (blue line), the oxidized film annealed at 250 °C in air (green line), and the film fluorinated with PVDF at 250 °C (red line). The reference spectrum of the LaCrO₃ (Cr³⁺) [6] is also shown in the figure.

The electronic structures of the valence and conduction bands were probed by synchrotron XPS and O K-edge XAS measurements. Fig. 2(a) shows the valence-band XPS spectra of the SrCrO_{2.8}, SrCrO₃, and SrCrO_{2.6}F_{0.4} films. The valence-band spectrum of the SrCrO_{2.8} film mainly consists of three structures, labeled as *B*, *C*, and *D*. According to previous density functional theory (DFT) calculations and XPS measurements [2], the structures B, C, and D can be assigned as incoherent parts of the Cr 3d t_{2g} , O 2p non-bonding, and O 2p bonding bands, respectively. In the SrCrO₃ film, the structures C and D are rigidly shifted to lower binding energies by 0.25 eV, thereby representing the chemical-potential shift associated with electron doping. Near the Fermi level (E_F) , as shown in the inset of Fig. 2(a), the structure B was suppressed and a coherent part of Cr 3d t_{2g} (structure A) evolved owing to the strong electron correlation effects, similar to other strongly correlated metallic transition metal oxides, such as SrVO₃, La_{1-x}Sr_xMnO₃, and Ca₁₋ $_x$ Sr_xRuO₃ [7-9]. On the other hand, in the SrCrO_{2.6}F_{0.4} film, a gap opened at $E_{\rm F}$ and the structure B was enhanced, which was consistent with the insulating behavior of the $SrCrO_{2.6}F_{0.4}$ film. The positions of the structures C and D were the same as those of the SrCrO_{2.8} film, which was consistent with the XAS results, showing that SrCrO_{2.8} and SrCrO_{2.6}F_{0.4} films had the same Cr valence numbers. In addition, a new spectral structure E appeared around the binding energy of 7-10 eV. Considering higher electronegativity of fluorine than oxygen, the structure E is assignable to the F 2p bonding states.

Fig. 2(b) shows the O K-edge XAS spectra of the SrCrO_{2.8}, SrCrO₃, and SrCrO_{2.6}F_{0.4} films measured using linearly polarized light, where the angle between the incident beam and the surface normal (θ_{inc}) was set at 60°. The O K-edge XAS spectra correspond to transitions into unoccupied O 2p states hybridized with Cr 3d and Sr 4d. As seen in Fig. 2(b), the peaks at 527–534 eV and those at 534-540 eV can be assigned to the Cr 3d-derived states (structures F, G, H, and I) and Sr 4d-derived states, respectively, by comparing the O K-edge XAS spectrum of the SrCrO₃ film [6]. Referring to the reported DFT theory calculations of SrCrO3 and CrO2 [2,10], we assigned the structure F to excitations of the unoccupied $t_{2g} \uparrow$ band, the structures G and H to the combination of unoccupied $e_g \uparrow$ and $t_{2g} \downarrow$, and the structure I to the unoccupied $e_g \downarrow$ band. The structure F of the SrCrO_{2.6}F_{0.4} film is located at 528.3 eV, which is 0.3 eV higher than that of the SrCrO₃ film. This suggests spectral weight transfer from the coherent part to the incoherent part with fluorination due to strong electron correlation effects. Moreover, the peak intensity of the structure F of the SrCrO_{2.6}F_{0.4} film was smaller than that of the SrCrO₃ film. This is mainly due to the decrease in Cr valence number, as seen in the case of La_{1-x}Sr_xCrO₃ thin films [6]. On the other hand, the $SrCrO_{2.6}F_{0.4}$ film showed a larger intensity than the SrCrO_{2.8} film, although the Cr valence numbers were the same. This may be due to local distortion of Cr-O bonds, because XAS using linearly polarized light is sensitive to the angle between the incident beam and the axes of O 2p orbitals due to the dipole selection rule [11].

Fig. 2: (a) Valence-band XPS spectra of the SrCrO_{2.8} (blue line), SrCrO₃ (green line), and SrCrO_{2.6}F_{0.4} films (red line). The inset of (a) shows the valence-band spectra close to E_F , along with the spectrum from Au foil for energy calibration purposes (gold line). (b) O *K*-edge XAS spectra of the SrCrO_{2.8} (blue line), SrCrO₃ (green line), and SrCrO_{2.6}F_{0.4} films (red line) measured at $\theta_{inc} = 60^{\circ}$.

References

- A. C. Komarek *et al.*, *Phys. Rev. Lett.* **101**, 167204 (2008).
- [2] K. H. L. Zhang et al., J. Phys. Condens. Matter 27, 245605 (2015).
- [3] R. Zhang et al., Inorg. Chem. 55, 3169 (2016).
- [4] Y. Su et al., Chem. Commun. 55, 7239 (2019).
- [5] H.-J. Noh et al., Europhys. Lett. 78, 27004 (2007).
- [6] K. H. L. Zhang et al., Phys. Rev. B 91, 155129 (2015).
- [7] M. Takizawa et al., Phys. Rev. B 80, 235104 (2009).
- [8] A. Chikamatsu *et al.*, *Phys. Rev. B* 76, 201103(R) (2007).
- [9] M. Takizawa et al., Phys. Rev. B 72, 060404(R) (2005).
- [10] C. B. Stagarescu et al., Phys. Rev. B 61, R9233 (2000).
- [11] M. Schmidt et al., Phys. Rev. B 53, R14761 (1996).

* chikamatsu@chem.s.u-tokyo.ac.jp