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1   Abstract 
Recently, our group has experimentally realize [1-3] 

theoretical predictions [4,5] of a new class of skyrmion 
host compounds with centrosymmetric space groups. In 
contrast to skyrmions stabilized by Dzyaloshinskii-Moriya 
interactions [6], skyrmions here emerge due to frustrated 
interactions [4] or due to higher order terms included in the 
Kondo Hamiltonian describing local moment magnets 
coupled to a Fermi sea [5]. Gd3Ru4Al12 is a good metal 
with Heisenberg-type Gd3+ moments, where competing 
interactions are realized due to the symmetry of the lattice. 
We have experimentally observed the skyrmion phase and 
competing magnetic orders using resonant elastic x-ray 
scattering (REXS) at the Gd-L2 edge using beamline BL-
3A [2]. 
 
2   Main 

Centrosymmetric materials with relatively high 
(hexagonal or tetragonal) symmetry are an emerging focus 
in the hunt for topological spin textures [1-3]. Here, 
competing Heisenberg-like interactions or four-spin terms 
(e.g. in the RKKY–expansion of the Kondo Hamiltonian) 
can realize complex magnetic orders such as spirals and 
skyrmion vortices. As compared to skyrmions in 
centrosymmetric materials (e.g. MnSi [6]) or at interfaces 
[7], Dzyaloshinskii-Moriya interactions (DMI) are absent 
or cancel out globally. Characteristically, spin textures in 
centrosymmetric materials condense at much shorter 
length scales ( ~2 − 3  nanometers) as compared to the 
typical DMI case (~10 − 300 nm), and generate a very 
large emergent magnetic field 𝐵𝐵𝑒𝑒𝑒𝑒. The latter is thought to 
drive large transport and magneto-optical responses [8], as 
well as new functionality [9]. 

Gd3Ru4Al12 crystallizes in a quasi-layered structure of 
P63/mmc space group, with perfectly planar sheets of Gd3+ 
magnetic ions in a distorted (‘breathing’) Kagome lattice 
(Fig. 1). The Ru sublattice, forming a triangular net, is 
largely responsible for electronic conduction. As compared 
to another compound, Gd2PdSi3, the present material is 
more metallic and boasts a qualitatively different phase 
diagram, where a transverse conical state competes with 
the skyrmion lattice at low temperature T (Fig. 2). This 
indicates that manipulation of magnetic anisotropy is 
important in the control of topological spin textures in 
centrosymmetric magnets. 

 
 

 
We studied REXS at BL-3A of Photon Factory using 

large, polished single crystals in reflection geometry inside 
the 8 Tesla superconducting magnet [2]. With the aid of 
polarization analysis, scattering from the q = (0.23, 0, 0) 
reflection was observed in several phases. At the lowest 
temperature (T = 2.4 K), we identified helical order in zero 
magnetic field (H = 0), followed by a transverse conical 
and a fan-like state as H is increased. At higher temperature 
(T ~ 8 K), within the boundaries of the SkL phase as 
determined from bulk characterization, transport, and 
Lorentz-transmission electron microscopy [2], we 
observed REXS intensity consistent with two volume 
fractions: a helical-type state (the skyrmion lattice) 
coexists with fan-like order. As the helical nature of the 
skyrmion state cannot be tested in LTEM, REXS provided 
very important input for the interpretation of our combined 
experimental results. 

 
 

 
Figure 1: (a) crystal structure of Gd3Ru4Al12 in 
P63/mmc space group. (b) Illustration of the ‘breathing 
Kagome’ rare earth sublattice dominating the magnetic 
properties. Excerpt from Ref. [2]. 
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Figure 2: (a-c,j) Illustration of magnetic orders in various phases.(d-i) REXS with polarization analysis, HK0 scattering 
plane, Gd-L2 edge for phases in (a-c). 𝜋𝜋 − 𝜋𝜋′ (red) and 𝜋𝜋 − 𝜎𝜎′ (blue) components of the magnetic satellite at q = (0.23, 
0, 0) were extracted and associated with in-plane and out-of-plane components of the ordered moment. (k-m) same for 
the skyrmion lattice. The 𝜋𝜋 − 𝜋𝜋′ intensity was found to be comparable for three reflections, consistent with multi-q 
magnetic order [inset of (m)]. The magnetic field was applied parallel to the c-axis 


