In situ XAFS Study on In/SiO₂ Catalyst for Non-Oxidative Coupling of Methane Dynamic Structure Change during the Activation Process

Upendar Kashaboina¹, Yuta Nishikawa², Yuki Wakisaka¹ Natee Sirisit¹, Deling Bao¹, Hiroko Ariga-Miwa¹, Satoru Takakusagi¹, Yuta Inami², Fumiya Kuriyama², Arnoldus Lambertus Dipu², Hitoshi Ogihara³, Shoji Iguchi², Ichiro Yamanaka², Takahiro Wada⁴, and Kiyotaka Asakura^{*1} *¹ Institute for Catalysis, Hokkaido University, Sapporo, 001-0021, Japan *² Tokyo Institute of Technology, Tokyo, 152-8552, Japan *³Saitama University, Shimo-ookubo, 338-8570, Japan

*⁴ Tokyo Medical and Dental University, Yushima, Tokyo, 113-8549, Japan

The structure of In /SiO₂ catalyst for the non-oxidative coupling of methane(CH₄)was studied by *in situ* X-ray absorption fine structure (XAFS) during the activation process under CH₄ flow. We found a drastic morphological change during the activation process under CH₄ flow such as melting to liquid at 430 K, the formation of a new structure with In-X(X=C or O) bond at 873 K and In metal reproduction at the reaction conditions at 1173 K.

1 Introduction

A catalyst for non oxidative coupling of methane(CH₄) to higher hydrocarbons (NOCM) is important to use the CH₄, a main ingredient of natural gases as feedstock. The In supported on SiO₂ is an active catalyst for the NOCM reaction[1]. Systematic studies of In/SiO₂ using *in situ* XAFS methods are required to gain further insights into the structural changes of In/SiO₂ during the activation process in order to reveal the active site. The main purpose of this work is to investigate the structural change during the activation process of the In/SiO₂ under the CH₄ flow conditions using the *in situ* XAFS spectroscopy.[2]

2 Experimental

An impregnation method was applied to the synthesis of In/SiO₂ catalysts according to the reported way[1]. The In K-edge spectra were calibrated against In metal foil with the maximum in the first derivative of the K-edge set to 27.94 KeV. *Operando* XAFS measurements of In/SiO₂ were carried out in a transmission mode at the beamline NW-10A, KEK-IMSS-PF (Tsukuba, Japan) using a Si (311) double crystal monochromator. All XAFS experiments were recorded with 40 s time intervals from 300 K to 1173 K under the CH₄ flow conditions.

3. Results and discussion

Figure 1 represents the Fourier transforms(FT) of k^3 -weighted $\chi(k)$ signals at the In K-edge of the In/SiO₂ under the CH₄ flow activation. The sudden change in the XAFS oscillation was found at ~ 430 K where the peak top was shifted to the lower side, indicating that In was melt to liquid. We found another prominent peak at ca. 873 K at ca. 1.56 Å in the FT, indicating that the formation of In -X (X is a lighter element such as carbon or oxygen) [2]. At the reaction temperature (1173 K), the In-X peak disappeared, and the only In-In bond was found indicating that metallic In was reproduced.

The In/SiO₂ catalyst exhibits the high catalytic activity for NOCM in the CH₄ flow activation process. *In situ* XAFS revealed the melting of In metal at 473 K,

In-X(X=O,C) formation at 873 K. The reproduced In metal at 1173 K was the active structure for NOCM reaction. In catalyst was activated after the dynamic structure changes.

- 1) Nishikawa, Y.; Ogihara, H.; Yamanaka, I., ChemistrySelect 2017, 2 (16), 4572-4576.
- Kashaboina, U.; Nishikawa, Y.; Wakisaka, Y.; Sirisit, N.; Nagamatsu, S.; Bao, D.; Ariga-Miwa, H.; Takakusagi, S.; Inami, Y.; Kuriyama, F.; Dipu, A. L.; Ogihara, H.; Iguchi, S.; Yamanaka, I.; Wada, T.; Asakura, K., Chem. Lett. 2019, 48 (9), 1145-1147.

Research Achievements

- 1. High temperature XAFS studies under the real working conditions were successfully carred out
- 2. Dynamic change of In catalyst was revealed during the activation process.
- 3. Active site structure was determined.

askr@cat.hokudai.ac.jp

Figure 1: k^3 -weighted EXAFS $\chi(k)$ signals during the activation conditions under CH₄ flow, at different temperatures; (a) 300 K, (b) 473 K, (c) 873 K, (d) 1173 K