BL-13B/2018S2-005

ペンタセン単結晶表面上に含窒素アセン分子を積層した 有機半導体 pn ヘテロ接合の電子構造解析

Electronic characterization of tetraaza-acene on the pentacene single crystal

郡上祐輝¹, 亀渕萌², 鶴田諒平¹, 岩下政揮¹, 高橋加奈¹, 竹内陸¹, 間瀬一彦³, 田所誠², 中山泰生¹

1東京理科大学大学院理工学研究科先端化学専攻

〒278-8510 千葉県野田市山崎 2641

2東京理科大学理学部第一部化学科

〒162-0826 東京都新宿区市谷船河原町 12-1

3高エネルギー加速器研究機構物質構造科学研究所

〒305-0801 茨城県つくば市大穂 1-1

Yuki Gunjo¹, Hajime Kamebuchi², Ryohei Tsuruta¹, Masaki Iwashita¹, Kana Takahashi¹,

Riku Takeuchi¹, Kazuhiko Mase³, Makoto Tadokoro², and Yasuo Nakayama¹

¹Fuculty of Science and Technology, Tokyo University of Science

2641 Yamazaki, Noda, 278-8510, Japan

²Fuculty of Science I, Tokyo University of Science

12-1 Ichigayahunagawaramachi, Shinjuku, 162-0826, Japan

¹Photon Factory, Institute of Materials Structure Science,

High Energy Accelerator Research Organization

1-1 Oho, Tsukuba, 305-0801, Japan

1 はじめに

有機半導体エレクトロニクス、特に効率的な有機 太陽電池の開発において、pn ヘテロ接合界面の構 造・物性制御は非常に重要である[1]。また、材料に 高いキャリア移動度を示す材料を用いることで、有 機太陽電池の損失要因の一つであるシャント抵抗を 低減し、高い開放端電圧と良好な曲線因子を得られ ることが期待される。ペンタセンは有機太陽電池の ベンチマーク材料として用いられる[2-4]。ペンタセ ンは高い電界効果移動度を示すことも知られており、 空間電荷制限電流による電荷移動度の見積もりにお いては、単結晶で室温では 35 cm²V⁻¹s⁻¹、225 K では 50 cm²V⁻¹s⁻¹を超える値が報告されている[5]。このこ とから、ペンタセン単結晶基板上に n 型分子を積層 した系は高効率な有機デバイスを実現するにあたり 有望であると考えられる。例えば、ペンタセンと C60の組み合わせは有機薄膜太陽電池のモデル界面 として、これまで理論的実験的に調べられてきてい る[2.6.7]。高移動度が得られる結晶性の pn ヘテロ接 合を形成する n型分子を選定し、形成される接合部 の電子構造を調べることは、基礎科学的な観点はも とよりデバイス応用を考える上でも重要な課題であ る。

n型半導体分子である 5,6,11,12-テトラアザナフタ セン(TANC) [8,9]は、ペンタセンと比較して環の数 こそ 1 つ少ないものの、ベンゼン環が直線的に縮環 した主骨格は共通していることから、TANC 分子は ペンタセン単結晶上で良好な結晶性で整列すると考 えられ、キャリアを輸送しやすい機能的なpnへテロ 界面にもなり得る。

本研究では、ペンタセン単結晶上に TANC を積層 して形成される界面の電子構造を、X 線光電子分光 法(XPS)および紫外線光電子分光法(UPS)により検証 した。

2 実験

PnSC は既報[10]と同様の手法で作製し、基板として用いた。PnSC は作製後大気および室内光に暴露されている。調製した PnSC 基板を超高真空中に導入し、試料温度を室温に保ったまま、石英坩堝内に入れた TANC を加熱し、蒸着速度 13 ~ 16 pm/s で成膜して測定試料を作製した。

XPS, UPS 測定は KEK-フォトンファクトリー(PF), BL13B[11]にて、Gammadata Scienta SES200 電子エネ ルギー分析器を用いて行った。XPS, UPS 測定では光 子エネルギーはそれぞれ 670, 30 eV に設定した。測 定の際は試料帯電を回避するため、波長 405 nm のレ ーザー光を同時照射した[12]。試料の真空準位の位 置は、UPS 測定で負のバイアス電圧(*V*_s = -5 V)を試 料に印加し、得られる二次電子カットオフ(SECO)か ら決定した。結合エネルギー*BE* は試料マニピュレ ータに設置された Ta 板からの 4f₇₂(*BE* = 21.8 eV[13]) あるいはフェルミ端の位置を基準に較正し、フェル ミ準位を原点として表示している。測定はすべて室 温・超高真空中で行った。

3 結果および考察

図1に PnSC および TANC/PnSC 界面の C1s XPS ス ペクトルを示す。本研究ではPnSCのClsピークを3 成分に分解した。赤で示した主ピークと橙で示した 低 BE 側のピークは過去の報告[14]と同様に現れた。 緑で示した主ピークよりも高 BE 側のピークは、 PnSC の最表面の炭素原子に由来すると予想される [15,16]成分と、PnSC表面に酸化体が生じることで現 れる成分[17,18]の和として生じたものと考えられる。 本測定では緑の成分が橙の成分よりも強く現れた結 果、ピーク全体の形状として、高エネルギー側に肩 構造をもっており、過去の報告[14]と異なっていた。 これは本研究で用いた PnSC が長時間大気曝露を経 たもので、酸化の影響を受けているためと考えられ る。TANC を蒸着すると、膜厚の増加に従って緑と 橙のピークは減衰した。10 nm 以降では緑の成分が 無くなっているが、これは最表面炭素原子と酸化体 に由来する緑の成分、TANCの主ピーク、PnSCの主

図 1: 励起エネルギー670 eV で計測された PnSC お よび TANC 薄膜の C1s 光電子スペクトルの TANC 膜厚依存変化

ピークを分離することが困難だったためであり、結 果として10 nm 以降の赤の成分は5 nm 以下と比べて ブロード化している。50 nm では橙のピークが消失 したことから TANC が PnSC 表面を完全に被覆した と考えられる。TANC の存在は、主ピークよりも約 1.5 eV 高 BE 側に現れた、窒素原子に隣接する炭素に 由来すると考えられる2 つのピーク構造からも確認 できる。これらのピークは5 nm で初めて確認でき、 その後蒸着量の増加に従って強度が高くなった。

図2にPnSCおよびTANC/PnSC界面のOls XPSス ペクトルを示す。PnSCに見られたピークは膜厚の 増加に従って減少しており、TANCの蒸着によって 表面が被覆されることでその強度が減衰したと考え られる。このことからも PnSC 表面に酸化体が生じ ている可能性が示唆された。

図 2: 励起エネルギー670 eV で計測された PnSC お よび TANC 薄膜の O1s 光電子スペクトルの TANC 膜厚依存変化

図 3 に TANC/PnSC 界面の N1s XPS スペクトルを 示す。膜厚 2 nm からピークが現れ、膜厚の増加に従 ってピーク強度の増大がみられた。

図 3: 励起エネルギー670 eV で計測された PnSC お よび TANC 薄膜の N1s 光電子スペクトルの TANC 膜厚依存変化

膜厚 2 nm 以降の各膜厚の Cls と Nls のピーク面積 比を、表面の炭素原子に対する窒素原子の存在比率 に換算してプロットしたグラフを図 4 に示す。結晶 構造[9]から予想される TANC1 分子層の厚みは 1.5 nm 程度であるのに対し、その 10 倍以上の膜厚領域 まで窒素原子の存在比率が膜厚に比例して増大して いることから、PnSC上で TANCは光電子の平均自由 行程よりも厚みの大きい島を蒸着初期に形成し、膜 厚の増加に伴い島が表面上で占める面積が増大する、 VW モード成長している可能性が示唆された。膜厚 50 nm について Cls と Nls のピーク面積の比較から 算出した炭素原子に対する窒素原子の存在比率は 0.27 となり、TANC の組成式 $C_{14}H_8N_4$ の C:N=1: 0.285 と概ね一致していたことから、遅くともこの 膜厚までには PnSC 表面全体を TANC が被覆したと 考えられる。

図 4: Cls と Nls のピーク面積から算出した炭素 原子に対する窒素原子の存在比率の膜厚依存変 化

PnSCおよび TANC/PnSC 界面の UPS ワイドスペク トルを図 5 に示す。量子化学計算[19]から導かれた TANC と PnSC の DOS シミュレーションカーブをそ れぞれ図 1 の右上と右下にそれぞれ表示した。計算 結果は本実験で得られた UPS スペクトルを比較的よ く再現している。

図 6 に PnSC および TANC/PnSC 界面の最高占有分 子軌道(HOMO)領域の UPS スペクトルを示す。PnSC の HOMO からの光電子の立ち上がり位置は BE =-0.53 (±0.03) eV と見積もられ、このエネルギーは PnSC 由来の光電子信号が検出された TANC 膜厚 20 nm 以下では有意な変化は見られなかった。一方、 TANC の HOMO に由来するピークは 5 nm の蒸着時 点から明確に現れ、立ち上がりのエネルギーは-2.28 (±0.06) eV と決定された。これより、TANC/PnSC 界 面におけるホール輸送準位のオフセットは 1.75 eV と見積もられる。他方、二次電子カットオフから見 積もられる仕事関数は TANC の膜厚によらず 4.46 (±0.05) eV であり(図 7)、TANC/PnSC 界面における真 空準位のシフトは 0.05 eV 以下であることが明らか になった。

図 6: PnSC および TANC/PnSC 界面の HOMO 領域 の UPS スペクトル

4 <u>まとめ</u>

本研究では、PnSC 基板上に TANC 分子を積層した pn ヘテロ接合の電子物性を UPS, XPS により解析し た。XPS の N1s, O1s の結果から、膜厚の増加ととも に TANC が PnSC を段階的に被覆する様子が確認で きた。C1s においては TANC 由来の新たなピーク構 造が確認できた。

UPS により、PnSC と TANC の HOMO 準位エネル ギー差は 1.75 eV と決定された。TANC の積層による PnSC および TANC の電子準位のエネルギーシフトお よび界面における真空準位シフトは、いずれも確認 されなかった。

謝辞

本研究は公益財団法人双葉電子記念財団自然科学研究助成の支援の下で行われた。

参考文献

- [1] J.R. Tumbleston et al., Nat. Photonics. 8, 385 (2014).
- [2] Y. Nakayama *et al.*, *ACS Appl. Mater. Interfaces.* **8**, 13499 (2016).
- [3] Y. Nakayama et al., Hyomen Kagaku 38, 324(2017).
- [4] Y. Nakayama et al., J. Phys. Chem. Lett. 10, 1312
- (2019).
- [5] O.D. Jurchescu *et al.*, *Appl. Phys. Lett.* **84**, *3061* (2004).
- [6] T. Minami *et al.*, *Appl. Phys. Express.* **4**, 062301 (2011).
- [7] P. Shanlin et al., Proc. SPIE. 6641, 664109 (2007).
- [8] M. Tadokoro *et al.*, *Angew. Chem. Int. Ed.* **45**, 5144 (2006).
- [9] K. Isoda et al., Chem. Lett. 41, 937 (2012).
- [10] M. Yamamoto *et al.*, *e-J.Surf. Sci. Nanotechnol.* **13**, 59 (2015).
- [11] A. Toyoshima et al., J. Phys.: Conf. Ser. 425, 152019 (2013).
- [12] S. Machida et al., Phys. Rev. Lett. 104, 156401 (2010).
- [13] C.J.Powell, J. Electron Sprctrosc. Relat. Phenom. **185**, 1 (2012).
- [14] M. Alagia et al., J. Chem. Phys. 122, 124305 (2005).
- [15] W. R. Salaneck, Phys. Rev. Lett. 40, 60 (1978).
- [16] Y. Harada et al., Phys. Rev. Lett. 52, 2269 (1984).
- [17] Y. Nakayama et al., J. Phys.: Condens. Matter 28, 094001 (2016).
- [18] Y. Mizuno et al., Mol. Cryst. Liq. Cryst. 648, 216 (2017).
- [19] M. W. Schmidt et al., J. Comput. Chem. 14, 1347 (1993).