Fe$_3$O$_4$ Nanoparticles and their Magnetic Properties using X-Ray Magnetic Circular Dichroism

M. ZZAMAN1, R. DAWN1, A. KUMARI1, V K. VERMA2 and K. AMEMIYA3, V. R. SINGH1*

1Department of Physics, Central University of South Bihar, Gaya 824236
2Department of Physics, Madanapalle Institute of Technology & Science Angallu, Madanapalle, AP 517325
3Photon Factory, IMSS, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

1 Introduction
Nano-sized materials show superior physical and chemical properties due to their mesoscopic effect, small object effect, quantum size effect and surface effect compared to atomic or bulk [1-4]. Literature suggest that Fe$_3$O$_4$ magnetic nanoparticles (MNPs) are non-toxic and biocompatible and also show superparamagnetic behaviour, high coercivity and low Curie temperature, so due to this nature it have intensively studied. Recently, Fe$_3$O$_4$ MNPs have brought out some new kinds of biomedical applications such as dynamic sealing [5], biosensors [6], and extraction of DNA/RNA from blood samples [7].

2 Experiment
The MNPs studied here are Fe$_3$O$_4$ with an approximate diameter 5 to 20 nm. The Fe$_3$O$_4$ MNPs were prepared by co-precipitation method due to its efficient and robust performance and the fact that it does not require any specialised equipment. For this a solution of FeCl$_2$ and FeCl$_3$ in a 1:2 molar ratio is prepared and slowly dripped into a pre heated NaOH solution. This forms a black precipice consisting of Fe$_3$O$_4$ particles. The sample is annealed in controlled oxygen to obtain a clean surface. The XAS and XMCD measurements were done at BL-16 of KEK-Photon Factory (PF), Japan. The XAS spectra were taken in the total electron yield (TEY) mode.

3 Results and Discussion
The XAS spectra obtained with applied magnetic fields of +3.0 and -3.0 T are denoted by m$^+$ and m$^-$ which represent left and right circularly polarized light, respectively as shown in Fig 1. The XMCD spectrum was recorded by taking a difference between the XAS spectra with negative and positive helicity of the circularly polarized light. Figures 1 show the Fe 2p-3d XAS and the XMCD spectra, respectively. The main two groups of the peaks shown in the XAS spectra are due to the 2p3/2 (L3 edge) and 2p1/2 (L2 edge) spin-orbit components. Sharp negative, positive and negative peaks (denoted by Oh (Fe$^2+$), Td (Fe$^3+$), and Oh (Fe$^3+$)) occur in the 2p3/2 edge of the XMCD spectra, respectively, around $h\nu$= 708.5, 709.7, and 710.4 eV.

The Fe ions were in the mixed state 3+ and 2+ states, and both sublattices at Oh sites (Fe$^3+$ and Fe$^2+$) were found to be antiferromagnetically coupled to Fe$^3+$ (Td sites), finding from the opposite signs of the XMCD signals. From the sum rule analysis, the orbital and spin magnetic moments of Fe ions are found to be 0.22 and 2.1 μ_B/Fe, respectively. The observed mb and ms of Fe ions are found to be 0.74 and 1.2 μ_B/Fe, respectively at 0.5 T. XMCD peak intensity remains high down to an applied field of 0.5 T indicating that ferromagnetism exists in this sample. The XMCD line shape (not shown here) is independent of the magnetic field. The slope of the XMCD intensity vs H curve indicates the paramagnetic part of the Fe magnetic moment.

Acknowledgement
The experiment at the Photon Factory was approved by the Program Advisory Committee (Proposal Nos. 2019G013. Authors acknowledges support from UGC-BSR Start-up Research Grant F.30-395/2017(BSR) and the Department of Science and Technology, India (SR/NM/Z-07/2015) for the financial support and Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) for managing the project.

References

* vijayraj@cusb.ac.in
Fig. 1. Fe L2,3-edge of anatase Fe3O4 magnetic nanoparticles (MNPs) taken in the TEY mode at T = 300 K and H = ± 3 T. (a) XAS. (b) XMCD spectra (c) integrated XAS and (d) integrated XMCD of Fe3O4 MNPs.