BL-2A, BL-16A2/2017G557, 2018S2-004, 2019G544

Electronic states of *A*-site ordered double perovskite $YBaCo_2O_x$ (x = 5.3 and 6) thin films investigated by X-ray spectroscopy

Akira CHIKAMATSU,^{1,*} Tsukasa KATAYAMA,² Takahiro MARUYAMA,¹ Miho KITAMURA,³ Koji HORIBA,⁴ Hiroshi KUMIGASHIRA,⁵ Hiroki WADATI,^{6,7} and Tetsuya HASEGAWA¹ ¹ Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

² Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan

 ³ Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
 ⁴ National Institutes for Quantum and Radiological Science and Technology, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan

⁵ Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

⁶ Graduate School of Material Science, University of Hyogo, Koto, Hyogo 678-1297, Japan

⁷ Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan

1 Introduction

A-site double perovskite cobaltite $RBaCo_2O_x$ (R = rare earth element), in which the A-site cations R and Ba order along the *c*-axis, exhibits intriguing electronic and electrochemical properties, such as spin crossover, high magnetoresistance, and high electronic and ionic conductivities, and these properties are strongly affected by the ionic size of R and the oxygen content (x). In particular, as the ionic size of R decreases, the Co 3d orbitals distort more with the shrinking of the *c*-axis, leading to a rich variety of electronic phases. Indeed, A-site-ordered YBaCo₂O_x with a small Y ion shows Co²⁺/Co³⁺ charge ordering (x = 5.0) [1], spin-state ordering between low and high spin-state Co³⁺ ions (x = 5.5) [2], and metallicity and in-plane ferromagnetism with a Curie temperature of 130-140 K [3,4]. Furthermore, YBaCo₂O₆ thin films exhibit huge magnetic anisotropy with a magnetic anisotropy constant of 1.5 × 10⁸ erg cm⁻³, which is comparable to that of SmCo₅ [3].

In this study, we investigated the electronic states of ferromagnetic metallic YBaCo₂O₆ and antiferromagnetic insulating YBaCo₂O_{5.3} epitaxial thin films by X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (PES), and X-ray magnetic circular dichroism (XMCD) measurements.

2 Experiment

YBaCo₂O_{5.3} epitaxial thin films were grown on SrTiO₃(001) substrates by pulsed laser deposition (PLD). The obtained films were subjected to successive topotactic oxidation using a NaClO aqueous solution to prepare YBaCo₂O₆ thin films. The typical film thicknesses were measured to be 60–80 nm using a stylus surface profiler.

The PES and XAS measurements were performed at a pressure of ~1 × 10^{-10} Torr and 200 K for the YBaCo₂O₆ film and 300 K for the YBaCo₂O_{5.3} film at the undulator beamline BL-2A. The PES spectra were collected using a VG-SCIENTA SES-2002 electronenergy analyzer. The Fermi energy of an *in situ* evaporated gold film was used for energy interference. The XMCD measurements of the YBaCo₂O₆ thin film were performed at a pressure of ~1 × 10⁻⁹ Torr and temperatures 30 K and 200 K using a vector-magnet XMCD apparatus with circularly polarized soft X-rays at the helical undulator beamline BL-16A2. The strength of the applied magnetic field was 5 T. The XAS and XMCD spectra were measured in the total electron yield mode.

3 Results and Discussion

The valence numbers and spin states of Co in YBaCo₂O_x (x = 5.3 and 6) thin films were determined by Co L_{2,3} XAS measurements. Figure 1 shows the Co L_{2,3} and Ba M_{4,5} XAS spectra of the YBaCo₂O₆ and YBaCo₂O_{5.3} films measured at 200 K and 300 K, respectively. The figure also includes the spectra of BaFeO₃, Sr₂CoO₃Cl, SrCoO₃, and CoO as references for Ba2+, high-spin (HS) Co3+, intermediate spin (IS) Co⁴⁺, and HS Co²⁺, respectively [5–7]. The observed XAS spectra were well reproduced by a linear combination of referenced XAS spectra normalized by the areas. The Co L-edge XAS spectrum of the YBaCo₂O₆ thin film was well fitted with a superposition of 50% HS Co3+ and 50 % IS Co4+, indicating that the Co valence number in the YBaCo₂ O_6 film is ~3.5 [3]. Moreover, the best fit to the spectrum of the YBaCo₂O_{5.3} thin film was obtained by assuming a superposition of 80% HS Co3+ and 20% HS Co²⁺, yielding an average Co valence of ~2.8. These Co valences are in good agreement with those calculated from the nominal compositions, 3.5 and 2.8, respectively.

Fig. 1: Co $L_{2,3}$ and Ba $M_{4,5}$ XAS spectra of the thin films of YBaCo₂O₆ and YbaCo₂O_{5.3} at 200 K (red solid line) and 300 K (green solid line), respectively. The light green, orange, pink, and light blue dashed lines are references for Ba²⁺ (BaFeO₃ [5]), HS Co³⁺ (Sr₂CoO₃Cl [6]), IS Co⁴⁺ (SrCoO₃ [7]), and HS Co²⁺ (CoO [6]), respectively. Reproduced from [8], with the permission of AIP Publishing.

Figure 2(a) shows polarization-dependent XAS spectra of the YBaCo₂O₆ thin film around the Co $L_{2,3}$ edges obtained at 30 K, where μ_{+} and μ_{-} denote the absorption coefficients for photon helicity parallel and antiparallel to the Co 3d majority-spin direction, respectively. The spectra were normalized by the peak height of Ba M₅ structure, which does not show XMCD. The inset of Fig. 2(a) shows a sketch of the XMCD experiment geometry. In this geometry, the obtained XMCD signal reflects the in-plane [110] magnetization. As shown in Fig. 2(a), an XMCD signal was detected at the Co $L_{2,3}$ edges, indicating that YBaCo₂O₆ is ferromagnetic at 30 K. In contrast, no XMCD signal was detected at 200 K, which is consistent with the result of magnetization measurement revealing ferromagnetic-paramagnetic transition at 130 K [3].

Figure 2(b) shows an XMCD spectrum ($\Delta \mu = \mu_+ - \mu_+$ μ_{-}) of the YBaCo₂O₆ thin film at 30 K. Notably, the Co L_3 XMCD signal observed in the photon energy area of 776.2 to 782.5 eV split into two peaks separated by 1 eV, with almost the same intensity. Referring to the XAS spectrum shown in Fig. 1, these two peaks can be assigned to the XMCD components from Co3+ and Co4+. Thus, it is concluded that both spin states contribute to the ferromagnetism of YBaCo₂O₆. From the spectrum, the orbital and spin magnetic moments $(M_{\rm orb} \text{ and } M_{\rm spin})$ were estimated to be 0.046 $\mu_{\rm B}/{\rm Co}$ and 0.17 µ_B/Co using XMCD sum rules [9]. The total magnetic moment ($M_{\text{total}} = M_{\text{orb}} + M_{\text{spin}}$) was 0.22 $\mu_{\rm B}/{\rm Co}$, which is smaller than the saturated moment of 0.75 $\mu_{\rm B}$ /Co, determined by *M*–*H* measurements at 5 K under H along the [110] direction [3]. This discrepancy can be attributed to the presence of a nonmagnetic surface layer because the probing depths of XAS and XMCD are much smaller than the film thickness [10]. Here, we focus on the Morb / Mspin ratio, which is less influenced by the non-magnetic surface dead layer. The Morb / Mspin ratio of the YBaCo₂O₆ thin film was estimated to be 0.27. According to the ionic model reported by Okamoto et al. [11], wherein three different spin states (low-spin (LS), HS, and IS) were considered for Co³⁺ and Co⁴⁺ ions, the Morb / Mspin ratios of LS Co3+, LS Co4+, IS Co3+, IS Co4+, HS Co3+, and HS Co4+ can be calculated as 0, 2.236, ≤ 0.5 , ≤ 0.33 , 0.215, and $\sim 10^{-10}$ ³, respectively [11]. The experimentally observed M_{orb} $/M_{spin}$ ratio for the YBaCo₂O₆ thin film (0.27) does not contradict the expected value of HS Co³⁺ or IS Co⁴⁺, supporting the claim that ferromagnetism arises from the HS Co³⁺ and IS Co⁴⁺ mixed states.

Fig. 2: (a) Polarization-dependent XAS spectra of the YBaCo₂O₆ thin film around the Co $L_{2,3}$ edges at 30 K. The XMCD experiment geometry is also shown. These spectra were normalized by the peak height of the Ba M_5 peaks. (b) Co $L_{2,3}$ -edges XMCD spectrum of the YBaCo₂O₆ thin film. Reproduced from [8], with the permission of AIP Publishing.

References

- [1] T. Vogt et al., Phys. Rev. Lett. 84, 2969 (2000).
- [2] D. D. Khalyavin *et al.*, *Phys. Rev. B* **75**, 134407 (2007).
- [3] T. Katayama *et al*, J. Mater. Chem. C 6, 3445 (2018).
- [4] M. Goto et al., Chem. Mater. 30, 8702 (2018).
- [5] Z. Hu et al., New J. Phys. 14, 123025 (2012).
- [6] C. F. Chang et al., Phys. Rev. Lett. 102, 116401 (2009).
- [7] F. Guillou et al., Phys. Rev. B 87, 115114 (2013).
- [8] A. Chikamatsu *et al.*, *Appl. Phys. Lett.* **118**, 012401 (2021).

Photon Factory Activity Report 2020 #38 (2021)

- [9] P. Carra *et al.*, *Phys. Rev. Lett.* **70**, 694 (1993).
 [10] T. Tsuyama *et al.*, *Phys. Rev. B* **91**, 115101 (2015).
 [11] J. Okamoto *et al.*, *Phys. Rev. B* **62**, 4455 (2000).
- * chikamatsu@chem.s.u-tokyo.ac.jp