Valence and structural analysis of cobalt nanoparticles on ZrO₂ for CO₂ photoconversion using XAFS

Tarik Loumissi, Hongwei Zhang, and Yasuo Izumi
Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku Chiba 263-8522, Japan

1 Introduction
Photocatalytic conversion of CO₂ into fuels is expected to be one of the key solutions to global warming and energy problem in a sustainable society. However, the catalytic activities for this reaction are still low, and the selectivity to preferable fuels, e.g., methane, is not high enough for practical use. Therefore, it is essential to clarify the reaction mechanism to solve these problems.

We tested Co₃O₄, CoO, and Co supported on ZrO₂. Among these catalysts, CoO–ZrO₂ exhibited the highest catalytic activity to form CH₄ from CO₂ at a rate of 140 µmol·h⁻¹·g⁻¹. This fact indicates that Co(II) is the major active site combined with ZrO₂. The Co site valence and structure were analyzed by Co K-edge X-ray absorption fine structure.

2 Experimental section
Co K-edge XAFS spectra were measured at 290 K in transmission mode. A Piezo transducer was used to detune the X-ray to two-thirds of the maximum intensity to suppress higher harmonics. The Co K-edge absorption energy was calibrated to 7709.5 eV using the spectrum of Co metal foil with 10 µm thickness. 150 mg of Co (5.0 wt %)–ZrO₂ photocatalyst was located in a reactor equipped with Kapton film windows. XAFS spectra were measured for samples under CO₂, H₂, and UV–visible light on the beamline. X-rays transmitted the disk perpendicularly while the incident angle of UV–visible light was 45°.

3 Results and Discussion
As shown in Figure 1, XANES data for Co nanoparticles on ZrO₂ before photoreduction test was fitted well with those of Co (75 mol%) and CoO (25 mol%) (Figure 1). The coordination number of Co–Co was 7.2 based on EXAFS analysis, suggesting the presence of mean 1.3 nm-size Co particles (dispersion 0.56) [1].

Then, the Co–ZrO₂ sample (150 mg) was exposed to CO₂ (2.3 kPa) and H₂ (21.7 kPa). XANES data for the Co nanoparticles were fitted well with those of Co (35 mol%) and CoO (65 mol%). The coordination number of Co–Co was 4.3 based on EXAFS analysis, suggesting that mean 0.74 nm of Co nanoparticles covered with CoO shell under CO₂ and H₂.

The change under CO₂ and H₂ can be quantitatively understood based on the reaction of surface Co sites with CO₂. Surface Co sites among 75 mol% Co before photoconversion using XAFS

9C, 12C, NW10A/2019G141

Figure 1. XANES spectra of Co K-edge for Co (5.0 wt %)–ZrO₂ under H₂ (21.7 kPa) and that under CO₂ (2.3 kPa) + H₂ (21.7 kPa).

Acknowledgements
The authors are grateful for the financial supports from Grants-in-Aid for Scientific Research B (20H02834) and C (17K05961) from the Japan Society for the Promotion of Science.

Reference

* yizumi@faculty.chiba-u.jp