プロトン伝導を可視化する発光性金属錯体の蒸気吸着機構解明 Elucidation of Vapor Adsorption Mechanism of Luminescent Metal Complexes that Visualize Proton Conduction

小林 厚志¹ ¹北海道大学大学院理学研究院化学部門 〒060-0810 北海道札幌市北区北 10 条西 8 丁目 Atsushi KOBAYASHI^{1,*} ¹Department of Chemistry, Faculty of Science, Hokkaido University North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan

1 はじめに

我々はこれまでに通常の分光測定では評価でき ないイオン伝導性、特に燃料電池などのデバイス で注目を集めている「プロトン伝導性」を、蛍光 分光分析法により評価する手法を確立するべく、 水和状態に強く依存した発光を示す金属錯体に焦 点を当てて、研究を推進してきた。[1-3] 室温から 100 ℃以下の低温領域で高いプロトン伝導性を示す 伝導体(例:Nafion)の多くは、多水和状態で高い プロトン伝導性を示す一方、脱水状態では高抵抗 状態となることが知られている。この特性を、水 和状態に強く依存した発光特性を示す金属錯体と 連動させることができれば、バルク電極を用いる ことなく、蛍光分光によって局所的なプロトン伝 導性を評価可能と期待される。このような背景か ら、本研究では水和状態やプロトン濃度に対して 鋭敏に応答させるべく、集積構造に応じて異なる 発光特性を示す平面型 Pt(II)錯体^[4]に対し、プロト ン伝導に必須とされるプロトン脱着基としてピリ ジル基を導入した[PtCl(tpypy)]Cl 錯体 (錯体 1, tpypy = 2,2': 6',2"-terpyridine-4',4"'-pyridine) と、高 プロトン伝導性を志向した HCl 付加体 [PtCl(tpypyH)]Cl2 (錯体 1-HCl) を新規に合成した (図1)。¹本稿ではこれら Pt(II)錯体の結晶構造と プロトン伝導性、相対湿度に応じて2段階で変化す るベイポクロミック特性について概説する。

図 1. 錯体 1 と 1·HCl の分子構造.

2 結晶構造

集積構造に応じて発光特性が大きく変化する Pt(II) 錯体系では、結晶構造解析が発光特性を評価するた めに必要不可欠である。今回、錯体 1 と 1-HCl 付加 体 の 二 水 和 物 お よ び 六 水 和 物 (1-HCl-2H₂O, 1-HCl-6H₂O)の単結晶合成に成功し、その結晶構造 解析を行った。図 2 にそれぞれの錯体の Pt(II)錯体分 子の積層様式を示す。錯体 1 では平面状 Pt(II)錯体分 子が Pt-Cl 結合を同方向に向けつつ階段状に積層し、

図 2. (a) 1, (b) 1·HCI·2H₂O, (c) 1·HCI·6H₂O の一次元積 層構造. 緑字と青字はCI-Pt…Pt-Clねじれ角(°)とPt…Pt 積層距離(Å)を示す. 水和水や対イオンは省略.

隣接 Pt(II)イオン間距離は 5.3103(1) Å と見積もられ た。この積層距離は Pt のファンデルワールス直径 (3.50 Å) よりも長く、白金間相互作用(Pt 5dz² 軌 道の重なりに起因)はほぼ存在しないと考えられる。 一方、二水和物結晶 **1-HCl-2H₂O** では、Pt(II)錯体1 分子当たりの Cl-対アニオンが2つ存在し、末端ピ リジル基に HCl が付加した状態であることが確認さ れ、隣接 Pt(II)イオン間の距離も 3.3~3.4 Å 程度まで 減少することがわかった。この短い Pt…Pt 積層距離 は強い白金間相互作用を示唆するものである。この ような積層様式の大きな違いは、1·HCl·2H₂Oでは中 性ピリジル基が H+付加により正電荷を帯びたピリジ ニウム基に変化し、それらの静電反発を軽減する必 要が生じたためと考えられる。興味深いことに、同 じ HCl 付加体でも六水和物結晶 1-HCl-6H2O では隣 接 Pt(II)イオン間距離がやや長くなり、積層様式も Pt-Cl 結合を完全に反対方向へ向けながら互い違いに 積層する構造に変化することが明らかとなった。こ れは極性が高く、多点で水素結合が可能な水分子を、 多量に取り込んだ影響によるものと考えられる。以 上の大きく異なる積層構造は、HCl 付加および水和 状態に応じて白金間相互作用が変動していることを 如実に示しており、大きく異なる発光特性が期待さ れる。

3 発光特性

三種の錯体は大きく異なる結晶構造を有し、白金 間相互作用の強度にも顕著な違いが見られたことを 踏まえ、発光特性を詳細に検討した。図3に室温固 体状態における励起-発光スペクトルを示す。 錯体 1 では 500~650 nm の領域に振動構造を伴う発光スペ クトルが観測された一方、HCI付加体では 1·HCl·2H₂O では 741 nm に、1·HCl·6H₂O では 642 nm に振動構造を伴わないブロードな発光帯が観測され た。前述した結晶構造において、錯体1のみ白金間 相互作用が存在せず、HCI 付加体ではいずれも有意 な白金間相互作用が存在することが示唆されたこと を踏まえると、錯体 1 は配位子中心のπ-π*発光を示 し、HCI 付加体では白金間相互作用に基づく金属-金 属-配位子間電荷移動遷移(MMLCT)状態由来の発光 を示したと考えられる。これは HCl 付加体の励起ス ペクトルにおいて 550 nm 以上の長波長領域まで MMLCT 遷移に基づく励起帯が観測された一方、溶 液状態における吸収スペクトルでは白金間相互作用 が生じないため、450 nm以上の領域で吸収帯が存在 しないという対照的な結果とも一致する。他方、水 和状態が異なる HCI 付加体が異なる MMLCT 発光極 大波長を示したことも注目に値する。X 線構造解析 により、いずれの水和状態においても分子内の結合 距離に顕著な違いは見られなかったことを考慮する と、MMLCT 発光波長の違いは、結晶内における積 層構造の差に起因していると考えられる。これは隣 接 Pt(II)イオン間の距離がより長く白金間相互作用が

図 3. (a) 1, (b) 1·HCl·2H₂O, (c) 1·HCl·6H₂O の室温固体 状態における励起-発光スペクトル.

弱いと考えられる六水和物結晶 **1-HCl-6H2O** が、二 水和物結晶 **1-HCl-2H2O** よりも短波長側に発光帯を 示していることと一致する傾向であり、HCl 付加が 本 Pt(II)錯体系における発光特性を大きく変動させた 要因であると言えよう。

4 プロトン伝導性と水蒸気吸着挙動

発光性Pt(II)錯体系はこれまでほとんどプロトン伝 導体として注目されてこなかったが、プロトン伝導 チャネルを形成しやすい一次元積層構造を巧みに利 用すれば、白金間相互作用に基づく発光特性と連動 した画期的なプロトン伝導材料の創出につながる可 能性を秘める。そのような期待から、1および1·HCI のプロトン伝導度の相対湿度依存性を測定した。得 られた結果を水蒸気吸着等温線測定結果と合わせて 図4に示す。298 K、相対湿度 40%RH における **1·HCl**のプロトン伝導度(1.7×10⁻⁶ S cm⁻¹)は錯体1 (1.2×10⁻⁷ S cm⁻¹) よりも1 桁高く、酸性度の高い HCl が付加されたことに由来すると考えられる。い ずれの錯体も相対湿度の上昇に伴い、プロトン伝導 度が向上し、95%RH における伝導度は 1·HCI で 6.8 × 10⁻³ S cm⁻¹ に到達した。この強い相対湿度依存性 は、吸着水がプロトン伝導に重要な役割を果たして いることを示唆するものと考えられる。1-HCIの伝 導度はプロトン伝導体として有名な Nafion 膜

図 4.1 および 1·HCl の(a)プロトン伝導度の相対湿度 依存性と(b) 水蒸気吸着等温線 (298 K).

(~0.1 S cm⁻¹) にかなり近く、これまで報告された Pt(II)錯体系ではトップレコードといえるレベルにあ る。注目すべきは、1·HCIが70%RH以上の領域にお いて、プロトン伝導度が急激に向上している振る舞 いである。水蒸気吸着等温線測定から、60%RH 以 上の領域で1·HCl·2H2Oから1·HCl·6H2Oへの転移に 伴う吸着水の増加が明瞭に観測されたことから、六 水和物相への転移がプロトン伝導度の急激な上昇に 寄与している可能性が高い。実際、相対湿度一定条 件下におけるプロトン伝導度の温度依存性測定によ り、活性化エネルギー(Ea)を見積もったところ、 1·HCl·2H₂O に対応する 50%RH では E_a = 0.39 eV で あったが、1·HCl·6H₂O へ転移していると想定され る 95%RH では E_a = 0.19 eV まで低下することが確認 され、1-HCI-6H2O相が高プロトン伝導性実現に寄与 していることが確認された。一方、錯体1は2段階 のヒステリシスを伴う水蒸気吸脱着特性を有するこ とが明らかとなったが、100%RHにおいても Pt(II)錯 体1分子当たり水3分子程度しか吸着されず、酸性 度の高い HCl も存在しないために、プロトン伝導度 が1·HCIよりも低くなったと推察される。

5 相対湿度に依存したベイポクロミック発光

水蒸気吸着等温線測定より、1·HCl が無水物相から二水和物相1·HCl·2H₂O を経て六水和物相 1·HCl·6H₂O へ転移していることが強く示唆された

図 5.1・HClの(a)粉末 X線回折パターンと(b)発光スペクトルの相対湿度依存性 (298 K).

ことを踏まえ、粉末 X 線回折(PXRD)測定により、 より詳細に検討した。0%RH から 100%RH までの各 相対湿度条件における PXRD パターンを図 5(a)に示 す。23%RH では 1·HCl·2H₂O の結晶構造から算出さ れるシミュレーションパターンとほぼ一致する PXRD パターンが観測された一方、0%RH では8度 付近のピークが分裂するなど、PXRD パターンが大 きく変化していた。これは 1·HCl·2H₂O から結晶水 を取り除くと異なる結晶構造へ転移することを示唆 しており、1-HCl-2H₂Oの結晶構造維持に結晶水が重 要な役割を果たしていると考えられる。一方、相対 湿度を向上させていくと六水和物相 1-HCl-6H2O に 帰属可能な回折ピークが多数出現し、95%RH では 六水和物相のシミュレーションパターンとほぼ一致 するものに変化した。これは水蒸気吸着等温線測定 結果と一致するものであり、六水和物相1·HCl·6H2O が高プロトン伝導性の実現の鍵となっていることを 直接的に示すものと言える。この水蒸気吸着に伴う 二段階の構造転移は、Pt(II)錯体分子の積層構造を大 きく変化させることから、発光特性も連動して変化 すると期待される。そこで室温固体状態における発 光スペクトルの相対湿度依存性を検討した(図 5(b))。0%RH では 670 nm 付近にブロードな発光帯 が観測され、23%RHから75%RHの相対湿度領域で は 1·HCl·2H₂O の MMLCT 発光とほぼ一致する 740 nm 付近まで長波長シフトすることがわかった。一 方、86%RH 以上の領域では逆に 640 nm 付近まで短 波長シフトして観測され、これは 1-HCl-6H2O で観 測された MMLCT 発光帯と同等の波長域にあること がわかった。スペクトル自体は振動構造を伴わない

ブロードな形状を維持していることから、いずれも MMLCT 発光であると考えられ、水蒸気の吸着によ って白金間相互作用が変動した結果が発光極大波長 の変動として観測されたものと推察される。

6まとめ

ここまで概説してきた通り、Pt(II)錯体 HCl 付加体 である 1·HCI は水蒸気吸着に応じて無水物相から二 水和物相、六水和物相へ順次転移し、吸着水による 水素結合ネットワークを介したプロトン伝導と、白 金間相互作用に基づく MMLCT 発光挙動が連動する、 特異な系であることが明らかとなった。HCl が付加 していない錯体1では相対湿度の上昇に応じてプロ トン伝導度は向上したが、発光スペクトルはほとん ど変化しなかったことを考慮すると、HCl 付加が白 金間相互作用に基づく発光特性とプロトン伝導挙動 を連動させる重要な役割を果たしていると考えられ る。tpypy 配位子の構造異性体を用いた Pt(II)錯体に おいても本系と酷似した伝導-発光連動挙動が観測 されており²、白金間相互作用を発光団としてプロ トン伝導材料へ展開する試みは、目に見えないプロ トン伝導挙動を発光色によって可視化する有望なア プローチであると言えよう。今後、酸性および塩基 性官能基を併せ持つPt(II)錯体の開発を通じて、さら なる高プロトン伝導性の実現と多色発光化を目指し ていきたい。

謝辞

本研究は北海道大学大学院総合化学院総合化学専 攻の学生諸氏(重田泰宏氏、今田慎一郎氏、山本尚 孝氏)の精力的な取り組みにより進展したものであ り、厚く御礼申し上げる。本研究で行った粉末 X線 回折の多くは、BL-8B ビームラインを利用して得ら れたものである。測定をサポートしていただいた KEK-PF 関係各位に心から感謝申し上げる。科学研 究費補助金(JP18K19086, JP17H06367, JP20H05082) の支援にも合わせて感謝したい。

参考文献

- [1] A. Watanabe, A. Kobayashi, E. Saitoh, Y. Nagao, M. Yoshida, M. Kato, *Inorg. Chem.* 54, 11058-11060 (2015).
- [2] A. Watanabe, A. Kobayashi, E. Saitoh, Y. Nagao, S. Omagari, T. Nakanishi, Y. Hasegawa, W. M. C. Sameera, M. Yoshida, M. Kato, *Inorg. Chem.* 56, 3005-3013 (2017).
- [3] A. Kobayashi, K. Shimizu, A. Watanabe, Y. Nagao, N. Yoshimura, N. Yoshida, M. Kato, *Inorg. Chem.* 58, 2413-2421 (2019).
- [4] A. Kobayashi, M. Kato, Eur. J. Inorg. Chem. 4469-4483 (2014).

成果

- A. Kobayashi, S. Imada, Y. Shigeta, Y. Nagao, M. Yoshida, M. Kato, *J. Mater. Chem. C* 7, 14923-14931 (2019).
- A. Kobayashi, S. Imada, D. Wang, Y. Nagao, M. Yoshida, M. Kato, *Faraday Discuss.* 225, 184-196 (2021).
- A. Kobayashi, T. Ehara, M. Yoshida, M. Kato, *Inorg. Chem.* 59, 9511-9520 (2020).
- S. Kondo, N. Yoshimura, M. Yoshida, A. Kobayashi, M. Kato, *Dalton Trans.* 49, 16946-16953 (2020).
- N. Yoshimura, A. Kobayashi, W. Genno, T. Okubo, M. Yoshida, M. Kato, *Sustainable Energy Fuels*, 4, 3450-3457 (2020).

* akoba@sci.hokudai.ac.jp