Origin of High Melting Point of Substituted Poly(lactic acid) with Isopropyl Side Chains Revealed by Synchrotron WAXD/SAXS Simultaneous Measurements

Hironori MARUBAYASHI,^{1,*} Yuji HAMADA,² and Shuichi NOJIMA² ¹ Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan ² School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

1 Introduction

Recently, the side-chain-substituted poly(lactic acid)s (SPLAs) [1,2] have attracted attention as novel bioplastics to overcome weakness of poly(L-lactic acid) (PLLA), a representative bioplastic. However, their possibility as crystalline plastics still remains unexplored. We reported that the crystalline SPLA with isopropyl side chains [P(L-2H3MB)] had much higher melting temperature (T_m) and crystallization rate as compared to PLLA, from which a great potential as high-performance bioplastics was demonstrated [1]. In this study, we investigated the nonisothermal crystallization process of P(L-2H3MB) by WAXD/SAXS time-resolved (TR) simultaneous measurements. We discuss the origin of high $T_{\rm m}$ of P(L-2H3MB) based on TR-WAXD/SAXS and thermal analysis.

2 Experiment

P(L-2H3MB) with $M_n = 1.4 \times 10^5$ g/mol and $M_w/M_n = 1.4$ was synthesized from L-valine [1].

TR-WAXD/SAXS simultaneous measurements were performed at KEK PF BL-6A ($\lambda = 0.1500$ nm) using an FP84HT TA Microscopy Cell (METTLER TOLEDO) for cooling from 240 to 30 °C at 5 °C/min, during which data acquisition and interval times were set to 5 and 1 s, respectively. The temperature of samples packed in a washer was monitored by a resistance temperature detector.

Differential scanning calorimetry (DSC) measurements were conducted in lab using a power-compensated DSC (Diamond DSC, PerkinElmer Inc.) in the non-isothermal condition with the same temperature range (240 to 30 °C) and cooling rate (5 °C/min) as TR-WAXD/SAXS.

3 <u>Results and Discussion</u>

Fig. 1 shows TR-WAXD profiles during the cooling process from the melt for P(L-2H3MB). The crystallization of P(L-2H3MB) started (appearance of diffraction peaks) around 185 °C and the degree of crystallinity (X_c) increased (increases in peak areas) with decreasing temperature. The crystal modification (β -form) was not changed during the non-isothermal crystallization. Note that shifts of peaks to higher 2θ (shorter spacing) with decreasing temperature would be attributed to thermal shrinkage of samples. The temperature dependence of X_c was obtained from TR-WAXD profiles. The peak temperature in dX_c/dT is 180 °C, which agrees with that in the DSC cooling curve. The equilibrium crystallization enthalpy (ΔH_c°) was evaluated from the linear relationship between X_c and the corresponding crystallization enthalpy (ΔH_c) . The obtained ΔH_c° was converted to the equilibrium melting enthalpy (ΔH_m°) considering a difference between specific heats in the glassy and rubbery states.

The equilibrium melting temperature $(T_{\rm m}^{\circ})$ was evaluated from the Gibbs–Thomson $(T_{\rm m} \text{ vs } l_{\rm c}^{-1})$, where $l_{\rm c}$ is the lamella thickness obtained form SAXS) and Hoffman– Weeks plots $(T_{\rm m} \text{ vs } T_{\rm c})$. The equilibrium melting entropy $(\Delta S_{\rm m}^{\circ})$ was obtained from the relationship $T_{\rm m}^{\circ} =$ $\Delta H_{\rm m}^{\circ}/\Delta S_{\rm m}^{\circ}$. As a result, a smaller $\Delta S_{\rm m}^{\circ}$ of P(L-2H3MB) than PLLA was found to give a higher $T_{\rm m}$ of P(L-2H3MB).

Fig. 1: TR-WAXD profiles during cooling process from the melt for P(L-2H3MB).

Acknowledgement

This work was financially supported by the "Planting Seeds for Research" program from Tokyo Tech (2014–2015), Mizuho Foundation for the Promotion of Sciences (2015–2017), JSPS KAKENHI Grant-in-Aid for Young Scientists (B) 17K12836 (2017–2019), and Kanamori Foundation Research Grant (2018–2019).

<u>References</u>

[1] H. Marubayashi and S. Nojima, *Macromolecules* **49**, 5538 (2016).

- [2] H. Marubayashi, S. Nojima, et al., Polym. Degrad. Stabil. 153, 318 (2018).
- * hironori.marubayashi.d7@tohoku.ac.jp