Evidence of Variations of Magnetic Properties of Vanadium Doped CaRuO$_3$ using X-Ray Magnetic Circular Dichroism

R. DAWN1, M. ZZAMAN1, V. K. VERMA2, K. KUMAR3, A. PRAMANIK4, A. KANDASAMI5 and K. AMEMIYA6, V. R. SINGH1,*

1Department of Physics, Central University of South Bihar, Gaya 824236
2Department of Physics, VIT-AP University, Beside AP Secretariat, Near Vijayawada, Amaravati 522237 A.P. India
3Department of Physics, Ranchi University, Ranchi 834008, India
4School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
5Department of Physics & Centre for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES) Dehradun, Uttarakhand 248007, India
6Photon Factory, IMSS, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

1. **INTRODUCTION:** The d-band metal oxides are renowned among materials due to the complexity of their phase diagram that exhibits a formidable array of close and almost overlapping transitions between metallic, insulating, magnetic, and even for superconducting phases [1]. After a long era of intensive study, a full theoretical understanding of such puzzled phase diagram still remains unsolved. In a typical scenario, one starts from an insulating, antiferromagnetically ordered state when the d-band is half-filled or nearly so. This is a classic example of a Mott insulator in which the single occupancy of each lattice site prevents free motion of the charge. Moving away from the half-filled situation (through chemical substitutions or doping, as for example) the charge eventually unfreezes, leading to a metallic phase with striking non-Fermi liquid properties and in some cases to a superconducting phase. In parallel to this, the nature of magnetic correlation changes dramatically from predominantly antiferromagnetic (superexchange-like) in the Mott-localized phase to predominantly ferromagnetic (Hund-like) in the delocalized metallic phase. Recent advances in the atomic-scale control of transition metal oxide interfaces offer new opportunities for the manipulation of strongly correlated electron systems with a growing awareness of the wealth of microscopic phenomena that need to be understood in order to arrive at a quantitative description of the electronic state at oxide interfaces. Magnetic fluctuations accompanying with insulator-to-metal transition and the associated quantum magnetic critical behaviour are often considered to be the underlying physics behind the unconventional superconductivity in magnetic materials of the strongly correlated electrons origin [2,3]. Despite the heavy interest in this topic, the situation is still not well understood.

Motivated by the above considerations, we have undertaken a careful experimental study of the interplay between the insulator to metal transition and magnetism in the perovskites Ca(Ru$_{1−0.05}$V$_{0.05}$)O$_3$. These compounds crystallize in an orthorhombic lattice configuration with end members, CaRuO$_3$ ($x=0$) and CaVO$_3$ ($x=1$), being an anomalous metal and a Mott insulator, respectively [1,4]. Although the static magnetic characteristics of CaRuO$_3$ is still a matter of debate—whether it is a paramagnet or on the verge of the ferromagnetic instability, strong magnetic fluctuations of ferromagnetic origin were detected in the NMR measurements [3]. Recent experimental studies suggest a coexistence of the quantum magnetic fluctuations and non-Fermi liquid behaviour for $T\leq25K$, albeit no magnetic order is detected to the lowest measurement temperature [1]. Y. Shirako et al reported that an inflection point near 270 K implies some transition, e.g. establishment of a long-range magnetic order below the temperature while the isothermal magnetization clearly indicates the absence of spontaneous magnetization over the temperature range which strongly suggest that CaRuO$_3$ possess antiferromagnetic interaction and its Néel temperature, T_N, is around 270 K [2].

2. **EXPERIMENT:** The high purity polycrystalline samples of Ca(Ru$_{1−0.08}$V$_{0.05}$)O$_3$ were synthesized by conventional solid-state reaction method using ultra-pure ingredients of V$_2$O$_5$, RuO$_2$ and CaCO$_3$. Starting materials were mixed in stoichiometric composition, with five percent extra RuO$_2$ to compensate for their rapid evaporation (in Ru-doped perovskites),
pelletized and sintered at 950°C for three days. The furnace cooled samples were grinded, pelletized and sintered at 1000°C for another three days. Resulting samples were characterized using Rigaku Smart Lab powder X-ray diffractometer, confirming the single phase of material. X-ray spectroscopy, scattering, and imaging experiments were performed at the variable-polarization soft x-ray beam-line BL-16A of the Photon Factory (KEK, Japan). Experimental geometry of soft x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) experiments are shown in Fig. 1 and 2. The sample was placed in the vacuum chamber with a pressure of 10⁻⁹ Torr equipped with a 5 T superconducting magnet. XAS and XMCD signals were measured at ±0.1T, ±1T and ±2T varying magnetic-fields (only the data of ±2T has been produced here) with right and left circularly polarized (RCP and LCP) x-rays having an energy resolution of 0.1 eV using the bulk-sensitive total fluorescence yield (TFY) method near Ru M₄,5 and V L₂,₃ absorption edges with right and left circularly polarized (RCP and LCP) x-rays.

3.RESULTS AND DISCUSSIONS: The XAS spectra obtained with applied magnetic fields of

![Fig 1(a) Normalised XAS spectra and Fig 1(b) Normalised XMCD spectra of Ru M₄,5 site. Fig 1(c) XMCD/XAS Intensity ratio w.r.t. applied magnetic-field ±0.1T, ±1.0T and ±2.0T.](image1)

![Fig 2(a) Normalised XAS spectra and Fig 2(b) Normalised XMCD spectra of V L₂,₃ site. Fig 2(c) XMCD/XAS Intensity ratio w.r.t. applied magnetic-field ±0.1T, ±1.0T and ±2.0T.](image2)
+2.0 and -2.0 T are denoted by μ^+ and μ^- which represent left and right circularly polarized light, respectively as shown in Fig 1(a) and 2(a). The XMCD spectrum was recorded by taking a difference between the XAS spectra with negative and positive helicity of the circular polarized light. Ru and V both shows a tendency of multiplet structure at the M_5 and M_4, and L_3 and L_2 absorption edges, respectively. Well-resolved peaks at the absorption maxima at $E = 464.54$ eV and 468.64 eV at the M_5 and M_4 edges, respectively are clearly observable. This verifies that the fine structures of Ru $3d \rightarrow 4f$ transition should result from the localization of Ru $4f$ electrons rather than the oxidation of the material. V, on the other hand, have multiplet absorption peaks found at L_3 edges. The L_3 peak with absorption energy, $E = 518.61$ eV arrives with a satellite peak at 516.34 eV and a pre-peak region at 517.58 eV; whereas, L_2 shows a singlet peak at 525.68 eV. Such results implies that unlike Ru-site, V $2p \rightarrow 3d$ transition is non-localised and infuses oxidation of the material. XMCD signal measured in a magnetic field of $B = 2.0$ T (as produced here) for Ru $M_{4,5}$ and V $L_{2,3}$ is shown in Fig.1(b) and Fig.2(b), respectively. The XMCD feature of Ru $M_{4,5}$ and V $L_{2,3}$ is anti-parallel to each other which predicts that substitution of V in the place of Ru introduces an contrast effect in the mother-material CaRuO$_3$. The XMCD/XAS intensity ratio w.r.t. the variable magnetic field with ± 0.1T, ± 1.0T and ± 2.0T are shown in Fig 1(c) for Ru-edges and in Fig 2(c) for V-edges. This result is quite relatable with the XMCD graphs. Fig 1(c) exhibits that the intensity ratio of XMCD/XAS is increasing with increasing magnetic-field; as same as Fig 2(c). This phenomenon suggests that after the doping of V at Ru-site, magnetic anisotropy gets increased which indicates an increase in ferromagnetism of the NPs. Although we do not have direct evidence of the ferromagnetic character of the fluctuation in x= 1 composition, it is justifiable to suggest that the data becomes negative, suggesting a tendency towards ferromagnetism arising a metallic feature of CaVO$_3$ at room temperature.

ACKNOWLEDGEMENTS: The experiment at the Photon Factory was approved by the Program Advisory Committee (Proposal Nos. 2021G501.

References:

*Electronic Email: vijayraj@cusb.ac.in