9C, 12C, NW10A/2020G676

Anchoring and reactivation of single-site Co–porphyrin over TiO₂ for the efficient photocatalytic CO₂ reduction

Keisuke Hara, Chao Zhang, Jiwon Yang, and Yasuo Izumi*

Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-

8522, Japan

1. Introduction Photocatalytic conversion of CO_2 into renewable energy sources completes a new C-neutral cycle in sustainable society. Semiconductors have been extensively studied for the catalysts. Metal complexes are usually employed for CO_2 photoreduction allowing precise control of catalytic properties. Accurate molecular design of metal complexes and further combination with semiconductors enable higher catalytic activity over stable photocatalyst. In this study, a photocatalyst consisting of Co–tetrakis(4-carboxyphenyl)porphyrin (TCPP) metal complex and TiO₂ was designed. The site coordination and electronic structure of active Co sites were monitored by EXAFS.

2. Experimental section H–TCPP and $CoCl_2 \cdot 6H_2O$ were dissolved into dimethylformamide and refluxed at 433 K. The red precipitate was washed with deionized water, and dried in vacuum at 333 K. Co–TCPP was added into suspended TiO₂ in ethanol and stirred. The precipitate was filtered, washed, and dried in vacuum at 298 K.

The photocatalysts Co–TCPP–TiO₂ that was used for a photocatalytic test was reactivated under ethanol (2.7 kPa) and the irradiation of UV–visible light [1].

3. Results and Discussion Using ${}^{13}CO_2$, H₂, UV-visible light, and Co-TCPP-TiO₂ composites, ${}^{13}CO$ formation rate reached a maximum: 5.6 µmol h⁻¹ g_{cat}⁻¹. When reactivated with ethanol, ${}^{13}CO$ formation rate was 63.0 µmol h⁻¹ g_{cat}⁻¹.

The reason of reactivation was investigated using Co K-edge EXAFS (Figure 1A). The coordination at Co site retained during the reactivation using ethanol and UV-visible light. Co–N coordination number (*N*; the value was 4) for fresh catalyst decreased to 3.5 after the photocatalytic test (a peak at 0.14 nm, phase shift uncorrected, Figure 1B-b) mostly due to the deformation and/or partial/reductive decomposition of Co–TCPP. The *N* value further decreased to 3.1 after the reactivation using ethanol and UV–visible light (a peak at 0.14 nm, phase shift uncorrected, Figure 1B-c) due to the formation of unsaturated Co site by the removal of hydroxy group by ethanol enabling the highest ¹³CO formation rate: 63μ mol h⁻¹ g_{cat}⁻¹.

The Co K-edge XANES spectra were also compared for fresh Co–TCPP–TiO₂ (Figure 1C-a), the catalyst under CO₂ and H₂ before, and after UV–visible light irradiation (Figure 1C-b), and the catalyst of Figure 1C-b reactivated under ethanol and UV–visible light (Figure 1C-c). These XANES pattern retained very similar pattern, demonstrating the intact single Co site coordinated by TCPP ligand. The intensity of pre-edge peak at 7712 eV progressively decreased by CO_2 photoreduction test (Figure 1C-b), then reactivation under ethanol and UV–visible light (Figure 1C-c), suggesting gradual reduction of Co ion site. The reductive decomposition of TCPP was still minor under CO_2 , H_2 , and light and/or under ethanol and light.

Figure 1. (A) $k^3 \chi$ and (B) its associated Fourier transform of Co K-edge EXAFS of Co–TCPP (2.5 wt %)–TiO₂ as fresh, evacuated (a), after photoreduction test using CO₂ (2.7 kPa), H₂ (20.7 kPa), and UV–visible light (b), and after subsequent treatment using C₂H₅OH (2.7 kPa) and UV–visible light (c).

The authors are grateful for the supports from KEK-PF Proposal Review Committee and Grants-in-Aid for Scientific Researches from the Japan Society for the Promotion of Science.

Reference [1] C. Zhang, J. Yang, K. Hara, R. Ishii, H. Zhang, T. Itoi, and Y. Izumi, *J. Catal.*, in final review process.

* yizumi@faculty.chiba-u.jp