BL-9C, BL-12C, AR-NW10A/2017G534, 2019G105

In situ XAFS characterization of Cr and Rh-incorporated Ceria (Cr_{0.19}Rh_{0.06}CeO_z) during NO reduction with CO

Satoshi MURATSUGU*1, Satoru IKEMOTO1, Mizuki TADA1,2

¹ Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.

² Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa, Aichi 464-8602, Japan.

1 Introduction

The Cr and Rh-incorporated ceria (denoted as $(Cr_{0.19}Rh_{0.06}CeO_z)^{[1]}$ showed an NO reduction activity at 373 K. It afforded >99% NO conversion at 393 K and >99% N₂ selectivity at 473 K, which were superior to Rh_{0.04}CeO_z, Cr_{0.17}CeO_z, and CeO₂, respectively. (conditions: NO (0.5%), CO (1.0%), Ar (5.0%), and He (balance) with a total flow rate of 100 mL min⁻¹ (GHSV = 6500 h⁻¹)).^[2] We investigated the change in the oxidation states of composed metal species in Cr_{0.19}Rh_{0.06}CeO_z by *in situ* Ce L_{III}-edge, Cr K-edge, and Rh K-edge XAFS under NO/CO flow and heating conditions to comprehensively clarify the behavior of each metal species in the NO reduction performance with CO.^[2]

2 Experimental

Ce L_{III}-edge and Cr K-edge XAFS were measured in a transmission mode at the BL-9C station. Ionization chambers filled with pure N₂/He (70/30 v/v) and pure N₂ were used to monitor incident and transmitted X-rays, respectively. Rh K-edge XAFS was measured in a transmission mode at the AR NW-10A station. Ionization chambers filled with pure Ar and pure Kr were used to monitor incident and transmitted X-rays, respectively.

In situ QXAFS measurements under NO flow/CO during H₂ reduction/O₂ oxidation flow were performed as follows. Cr0.19Rh0.06CeOz was placed in an in situ temperature-controlled gas flow cell. After pretreatment with N₂ (100 mL min⁻¹) at 573 K for 1 h, the cell temperature was decreased to 473 K under N₂ flow (100 mL min⁻¹) for 60 min. After 10 min, the QXAFS measurement was started. After 5 min, the gas was changed to $CO + N_2$ (5 + 95 mL min^{-1}) and the gas flow was held for 30 min. After 10 min, the cell was flushed with N_2 (100 mL min⁻¹) for 20 min. Secondly, the gas was changed to NO + N_2 $(5 + 95 \text{ mL min}^{-1})$ and the gas flow was held for 30 min. The gas was finally changed to N_2 (100 mL min⁻¹), and the cell was cooled to room temperature.

3 Results and Discussion

Figure 1 (A(a), B(a), C(a)) show *in situ* Rh K-edge, Ce L_{III}-edge, and Cr K-edge XANES spectral changes of $Cr_{0.19}Rh_{0.06}CeO_z$ under CO flow.^[2] The Rh and Cr K-edge XANES spectra rapidly changed within 5 min, suggesting that oxygen species in the Cr component was consumed by the reaction with CO. On the other hand, the Ce L_{III}-edge XANES spectra gradually changed over 30 min. Figure 1 (A(b), B(b), C(b)) show *in situ* Rh K-edge, Cr K-edge, and Ce L_{III}-edge XANES spectral changes of Cr_{0.19}Rh_{0.06}CeO_z under NO flow.^[2] All XANES spectral change showed that all metal species were oxidized, suggesting that the reduced Rh species and Cr components and CeO₂ surface were re-oxidized by NO.

Together with *in situ* FT-IR spectral analyses of $Cr_{0.19}Rh_{0.06}CeO_z$ under Co and NO treatments and kinetic analysis, Rh species acted as adsorption sites for both NO and CO, and chromium oxides played a role to the oxygen transfer from the cleaved NO to CO on the CeO₂ surface. This effect would promote the efficient NO reduction with CO on Cr_{0.19}Rh_{0.06}CeO_z at low temperature.

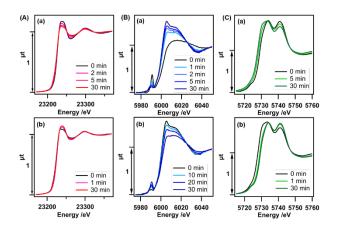


Figure 1. *In situ* (A) Rh K-edge XANES, (B) Cr K-edge XANES, and (C) Ce L_{III}-edge XANES spectra of $Cr_{0.19}Rh_{0.06}CeO_z$ (a) under CO flow and (b) under NO flow at 473 K.

References

- [1] S. Ikemoto *et al.*, *Phys. Chem. Chem. Phys.* 21, 20868-20877 (2019).
- [2] S. Ikemoto et al., ACS Catal. 12, 431-441 (2021).
- * smuratsugu@chem.nagoya-u.ac.jp