BL-9C, BL-12C, AR-NW10A/2019G105, 2021G110, 2021G113

XAFS Characterization of N-Heterocyclic Carbene-attached Cr and Rhincorporated Ceria (NHC-*r*-Cr_{0.19}Rh_{0.06}CeO_z)

Satoshi MURATSUGU*1, Satoru IKEMOTO1, Mizuki TADA1,2

¹ Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.

² Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa, Aichi 464-8602, Japan.

1 Introduction

ICy-r-Cr_{0.19}Rh_{0.06}CeO_z was newly prepared by the attachment of 1,3-dicyclohexylimidazol-2-ylidene H₂-reduced Cr_{0.19}Rh_{0.06}CeO_z (ICy) on (r- $Cr_{0.19}Rh_{0.06}CeO_z$,^[1] and it showed catalytic activity for 1,4-arylation cyclohexenone the of with whereas *r*-Cr_{0.19}Rh_{0.06}CeO_z phenylboronic acid, without ICy was inactive.^[2] We investigated the local coordination structures of ICy-*r*-Cr_{0.19}Rh_{0.06}CeO_z and *r*-Cr_{0.19}Rh_{0.06}CeO_z before and after the attachment of ICy.^[2]

2 Experimental

Rh K-edge XAFS of ICy-*r*-Cr_{0.19}Rh_{0.06}CeO_z and *r*-Cr_{0.19}Rh_{0.06}CeO_z were measured in a transmission mode at room temperature at the NW10A station with a Si(311) double-crystal monochromator. Samples were grounded and packed into a cell, and the cell was sealed with Kapton films under an Ar atmosphere so as not to be exposed to the air. EXAFS spectra were analyzed using ATHENA and ARTEMIS programs. k^3 -Weighted EXAFS oscillations were Fourier transformed into *R*-space, and curve-fitting analysis was performed in *R*-space with coordination number (CN), interatomic distance (*R*), Debye-Waller factor (σ^2), and correction-of-edge energy (ΔE_0). Phase shifts and backscattering amplitudes were calculated by the FEFF8.

3 Results and Discussion

Figure 1 shows Rh K-edge EXAFS Fourier transforms ICy-r-Cr_{0.19}Rh_{0.06}CeO_z and r- $Cr_{0.19}Rh_{0.06}CeO_z$, and curve-fitted structural parameters are summarized in Table 1. The curvefitted CN and R for Rh-Rh bond of ICy-r-Cr_{0.19}Rh_{0.06}CeO_z were 1.3 ± 0.2 and 0.207 ± 0.001 nm, respectively, and those of *r*-Cr_{0.19}Rh_{0.06}CeO_z without ICy modification were also 1.3 \pm 0.2 and 0.207 \pm 0.001 nm, respectively. The curve-fitted CN and *R* for Rh-O bond (the interaction between Rh nanocluster surface of and the *r*-Cr_{0.19}Rh_{0.06}CeO_z) of $ICy-r-Cr_{0.19}Rh_{0.06}CeO_z$ were 2.8 ± 0.3 and 0.262 ± 0.001 nm, respectively, and those of *r*- $Cr_{0.19}Rh_{0.06}CeO_z$ without ICy modification were also 2.8 ± 0.4 and 0.261 ± 0.001 nm, respectively. The similar values indicated the maintenance of Rh nanocluster structure on the surface.

FT-IR, XPS, and photoluminescence spectroscopy showed that the ICy was existed as carbene species on the surface of r-Cr_{0.19}Rh_{0.06}CeO_z, and ICy-r-Cr_{0.19}Rh_{0.06}CeO_z exhibited catalytic performances for 1,4-arylation of cyclohexenone (yield: >99%). On the other hand, Cr_{0.19}Rh_{0.06}CeO_z (without ICy) did not show any catalytic activity for the 1,4-arylation, suggesting that the interaction of the ICy carbene ligand with the Rh nanocluster played a key role to induce the catalytic activity. DFT calculations suggested that ICy carbene ligand controlled the adsorption sites of the phenyl group on the Rh nanocluster to promote the C-C bond formation of the phenyl group and cyclohexenone.

Figure 1. Rh K-edge EXAFS FTs of (a) ICy-*r*-Cr_{0.19}Rh_{0.06}CeO_z and (b) *r*-Cr_{0.19}Rh_{0.06}CeO_z.

Table 1. Curve-fitting Results of Rh K-edge EXAFS Fourier Transforms of ICy-r-Cr_{0.19}Rh_{0.06}CeO_z and r-Cr_{0.19}Rh_{0.06}CeO_z ^a

Shell	CN	<i>R</i> /nm		∆ <i>E</i> ₀ /eV	σ² /× 10 ⁻⁵ nm²
ICy- <i>r</i> -Cr _{0.19} Rh _{0.06} CeOz					
Rh–O	1.3 ± 0.2	0.207	±	10 ± 2	5 ± 1
		0.001			
Rh–Rh	2.8 ± 0.3	0.262	±	-2 ± 1	10 ± 1
		0.001			
r-Cr _{0.19} Rh _{0.06} CeO _z					
Rh–O	1.3 ± 0.2	0.207	±	9 ± 2	5 ± 1
		0.001			
Rh–Rh	2.8 ± 0.4	0.261	±	-2 ± 1	10 ± 1
		0.001			

^{*a*} k range and R range were 30-140 nm⁻¹ and 0.12-0.27 nm, respectively.

- <u>References</u> [1] S. Ikemoto *et al.*, *Phys. Chem. Chem. Phys.* **21**, 20868-20877 (2019).
- [2] S. Ikemoto et al., J. Am. Chem. Soc. 145, 1497-1504 (2023).
- * smuratsugu@chem.nagoya-u.ac.jp