Enhancement of Electrical Conductivity and Thermal Stability of Iron- or Tinsubstituted Vanadate Glass and Glass-Ceramics nanocomposite to be used as a High-Performance Cathode Active Material in Sodium-Ion Batteries

Ahmed IBRAHIM¹, Satoshi WATANABE¹, Koki KUBO¹, Yuki ARITA¹ and Shiro KUBUKI^{1*} ¹ Department of Chemistry, Graduate Course of Science, Tokyo Metropolitan University ¹1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397, Japan

1 Introduction

Rechargeable Li-ion batteries (LIBs) are now commonly applied as a portable energy source for powering various electronic devices and household appliances. Meanwhile, there is still more interest in achieving high-capacity rechargeable batteries for broader applications like electric vehicles (EVs) while maintaining their safety and economic feasibility [1]. Although having high performance with a theoretical capacity of 274 mAh g⁻¹for LiCoO₂ cathode [2], commercially available Li-ion battery faces the crisis of Li and Co scarcities in the future because of their abundance in Earth's crust is only about 20 and 25 ppm respectively [3]. Due to this reason, new secondary batteries composed of ubiquitous elements with high capacity and recyclability are intensively investigated. Many scientists have recently started looking for new elements abundant in nature and inexpensive to utilize in batteries. Many batteries have recently been developed that apply different chemical elements instead of lithium, such as Al^{3+} [4], Ca^{2+} [5], K^{+} [6], Mg^{2+} [7] and Na^{+} [8]. The Naion battery with a theoretical capacity of 235 mAh g⁻¹ for NaCoO₂ cathode [2] is one of the most promising candidates for a post-Li-ion battery age because Na has an abundance in Earth's crust of 23600 ppm, which is much larger than that of Li and Co [3]. As a result, the interest in Na-ion batteries (SIBs) as a viable alternative to LIBs for large-scale energy storage has grown significantly since 2010 [9].

To develop a Na-ion battery with high capacity, vanadate glass and ceramics are suitable candidates for the cathode active material because the expected theoretical capacity is about 400 mAh g⁻¹ [10]. It was reported that vanadate bronze ($M_x V_2 O_5$, M: Na⁺, Ag⁺) showed relatively high cathode performance when applied in a Na-ion battery [11]. For example, the capacity of 62 and 83 mAh g-1 was recorded for Na_{2.46}V₆O₁₆ and Na_{0.33}V₂O₅ under the current density of 1.5 and 0.02 mA g⁻¹, respectively [11]. Also, vanadate glass upper is a promising cathode material for Na-ion batteries because of the large pore size due to the amorphous structure and the electrical conductivity (σ) of about 10⁻⁷~10⁻⁵ S cm⁻¹. This latter is due to electron hopping between the vanadium ions of different oxidation states [12]. In our previous study, a large initial discharge capacity of 382.3 mAh g⁻¹ was recorded for a Li-ion battery which contained 15LiO₂•10Fe₂O₃•20SnO₂• 5P₂O₅•70V₂O₅ glass cathode with the electrical conductivity (σ) of 7.4•10⁻

⁷ S cm⁻¹ [13, 14]. The ⁵⁷Fe- and ¹¹⁹Sn- Mössbauer spectra of this glass showed that Fe^{III} was substituted at the network forming site of vanadium ions with the isomer shift (∂) of 0.35 mm s⁻¹ and quadrupole splitting (Δ) of 0.88 mm s⁻¹. In comparison, Sn^{IV} accommodated network modifying sites of Li-ions showing ∂ of 0.08 mm s⁻¹ and Δ of 0.52 mm s⁻¹ [15]. Recently, Kubuki *et al.* found that Naion battery with a cathode of xNa₂O•(90-x)V₂O₅•10P₂O₅ glass with 'x' of 5, 25 and 45 mol% showed a large initial capacity of 307, 184 and 258 mAh g⁻¹, respectively, and a small irreversible capacity of 86, 6 and 21 mAh g⁻¹ under the current density of 5 mA g⁻¹ [16]. These results imply that vanadate glass can be a better cathode active material for Na-ion batteries if Fe₂O₃ or SnO₂ is introduced.

In this work, a novel vanadium glass and glassceramics nanocomposite series have been prepared. The relationships between local structure, physical properties and cathode-active properties in the Na-ion battery of Fe_2O_3 or SnO_2 substituted $Na_2O-V_2O_5-P_2O_5$ glass were investigated to develop a Na-ion battery with a high capacity and recyclability.

- 2 Experiment
- 2.1. Sample preparation
- 2.1.1. Vanadate glasses and glass-ceramics

 $xNa_2O(85-x) V_2O_5(10P_2O_5(5Fe_2O_3))$ and $xNa_2O(85-x) V_2O_5(10P_2O_5(5Fe_2O_3))$ x) $V_2O_5 \cdot 10P_2O_5 \cdot 5SnO_2$ (x=5, 25 and 45 mol%) glasses respectively denoted as xFeV and xSnV were prepared by a conventional melt-quenching method. The mixture of chemical reagents of Na₂CO₃(199-01585, Wako), V₂O₅(226-00125, Wako), NH₄H₂PO₄(012-03305, Wako), Fe₂O₃(096-04825, Wako) and SnO (205-01612, Wako) was placed into a platinum crucible and melted at 1200 °C for 1 h in an electric furnace (NHK-170, Nitto). Darkbrown glass samples were obtained by quenching the crucible bottom with ice-cold water. For the 57Fe-Mössbauer measurement, 10 mg of 57Fe₂O₃ (57Fe: 95.90%, ISOFLEX USA) was added to Fe₂O₃ for the preparation of xFeV glasses. Additionally, each glass sample was heattreated at 500 °C for 100 min in an electrical furnace to prepare glass-ceramics samples.

2.1.2 Na-ion battery

Na-ion battery was assembled in the type of CR2032, in which Ti- and Ni- mesh fixed the active materials at the cathode and the anode. A separator separated them, and the inside space of the coin cell was filled with electrolyte (LIPASTE-P/S1, NaClO₄ 1mol/L Propylene Carbonate solution, Tomypure). The cathode of the Na-ion battery was prepared in the mass ratio of xFeV or xSnV glass and glass-ceramics: acetylene black (ab, 06-0025, Strem Chemicals) to polytetrafluoroethylene (PTFE) as 70:25:5. For the preparation, first, the finely pulverized xFeV or xSnV glass/glass-ceramics powder and ab with the respective weight of 500 and 178 mg were mixed with a zirconia planetary ball mill (Planet Min(-F), Nagano) under 900 r.p.m for 30 min. The cathode with a weight of 30 mg in 1 cm diameter was formed by pressing 95 mg of the mixture after adding 5 mg of PTFE. Next, an anode was prepared with 30 mg metallic Na (750-70852, Wako) with the same dimension.

2.2. Characterization

2.2.1. X-ray diffraction

RINT-TTR III diffractometer measured the X-ray diffraction (XRD) patterns (Rigaku) using Cu-K_{α} X-ray (λ = 0.1581 nm) generated by setting the tube voltage and current at 50 kV and 300 mA, respectively. The XRD patterns were recorded between 2 Θ of 10 and 80° at a scan speed of 5° min⁻¹ and sampling width of 0.02°. The analysis of the XRD patterns was carried out by PDXL2 ver.2.8.1 using the database ICDD PDF-4.

2.2.2. X-ray absorption fine structure (XAFS)

X-ray absorption spectra (XANES / EXAFS) measurements around the vanadium K-edge were carried out in transmission mode using a beamline BL-12C at the High Energy Accelerator Research Organization (KEK-PF, 1-1 Oh-ho, Tsukuba, Ibaraki, 3050801, Japan). The X-ray beam from the synchrotron was monochromatized by Si (111) double-crystal and cut the higher harmonic waves by Ni mirror. The X-ray intensity was recorded by setting ionization chambers before and after the transmission. The front chamber was filled with N₂+He gas (N₂: 30%, He: 70 %), while the rear was with $Ar+N_2$ gas (Ar:30 %, N_2 : 70 %). A pellet with 0.8 cm in diameter was prepared by pressing the mixture composed of a 5 mg powdered sample and 95 mg boron nitride at 5 kN. The software "Athena version:0.9.26" was used to analyze obtained spectra. 2.2.3. ⁵⁷Fe- and ¹¹⁹Sn Mössbauer spectroscopies

⁵⁷Fe- and ¹¹⁹Sn- Mössbauer spectra of glasses and glassceramics samples were measured at room temperature by the conventional constant acceleration method in transmission mode. 57Co in Rh matrix with the activity of 925 MBq (MCo7. 123, produced on Oct. 1, 2018, Ritverc), and 119mSn in CaSnO3 with 185 MBq (MSn9. 222, produced on Jul. 22, 2015, Ritverc) were used for the sources, while α -Fe and BaSnO₃ served for the reference of isomer shifts, respectively. The movement of the sources was controlled by a Mössbauer velocity transducer (MVT-1000, Wissel) connected with a digital function generator (DFG-1000, Wissel) and Mössbauer driving unit (MDU-1200, Wissel). The γ -ray signals from the source through the sample were detected by the proportional counter (454131, LND) and amplified by a preamplifier (142IH, ORTEC) and an amplifier (485, ORTEC), which was applied by 2 kV by high voltage power supply (510, ORTEC). The amplified signals were monitored by a

personal computer attached to a single-channel analyzer (SCA-550, ORTEC) and multi-channel scaler (EASY-MCS, ORTEC). Mösswinn 4.0 analyzed the obtained spectra by Lorentzian fitting.

2.2.4. Differential thermal analysis (DTA)

Differential thermal analysis (DTA) measurements were performed by Thermo plus TG8120, Rigaku, under the heating rate of 10 K min⁻¹ and the temperature range between 100 and 600 °C. The weight of the glass sample and α -Al₂O₃ reference was fixed to be 10 mg.

2.2.5. Electrical Conductivity

Both DC and AC conductivity measurements were carried out to evaluate the electrical property of the glass samples. The DC conductivity was measured by the four-probe method using DC current-voltage monitor (6241A, ADC). The resistance (R) was evaluated by measuring voltage (V) by changing current (I) from -0.3 to 0.3 mA. The value (R) can be calculated from the slope of the V-I plot, which obeys Ohm's law:

$$R = V/I \tag{1}$$

The conductivity (σ) was calculated from the relation $\sigma = l / (A R)$ (2)

where *l* and *A* are the sample's longitudinal length (in cm) and cross-section (in cm²), respectively. AC conductivity was measured by an impedance analyzer (Alpha-AN Dielectric Spectrometer, Novocontrol Tech.) in the frequency range from 10^{-2} to 10^{6} Hz and at a temperature from 30 to 150 °C with 20 °C steps. The impedance spectrum at each temperature was measured twice. The specimens were prepared as 5 mm in diameter and 1 mm in thick disk by applying a pressure of 2×10^{3} kg to the powdered glass samples. Gold electrodes 3.8 mm in diameter were sputtered onto both sides of the disk using Sputter coater SC7620, Quorum Technologies for the electrical contact.

2.2.6. Na-ion battery performance

The charge-discharge capacity and recyclability of the Na-ion battery were measured by a constant current providing device (TOSCAT-3100SK, Toyo-system) in the voltage range between 0.8 and 3.6 V and a current density of 0.2 mA cm⁻² (= 0.15 mA g⁻¹) and 2 mA cm⁻² (=1.5 mA g⁻¹) at 25 °C. The charge-discharge process was repeated up to 30 times, including 10 min breaks between the charge and discharge processes.

3 Results and Discussion

From DTA curves, gradual decreases in glass transition temperature (T_g) from 266 to 201 °C and in crystallization temperature (T_c) from 343 to 260 °C were observed for xFeV glasses as 'x' increased from 5 to 45 mol%. The same behaviour, i.e. decrease of T_g from 244 to 202 °C, and decrease of T_c from 307 to 252°C with increasing 'x' from 5 to 45 mol% observed for xSnV glass-ceramics. This indicates that the introduction of Na₂O reduces thermal stability. Furthermore, the DC conductivity at 303K for xFeV and xSnV glasses and glass-ceramics nanocomposite, before heat treatment, decreases from 2.82 × 10⁻⁵ to 6.61 × 10⁻⁷ S cm⁻¹ and from 1.26 × 10⁻⁵

to 4.27×10^{-7} S cm⁻¹, respectively, with increasing Na₂O content from 5 to 45 mol%. The values of electrical conductivity of xFeV and xSnV glasses and glass-ceramics nanocomposite are higher than in xNa₂O•10P₂O₅•(90x)V₂O₅, abbreviated as xV glasses, where the electrical conductivity of xV decreased from 5.13×10^{-6} to 9.55×10^{-5} ⁸ S cm⁻¹ with increasing Na₂O content from 5 to 45 mol%. This indicates that the introduction of Fe₂O₃ and SnO₂ produces an increase in electrical conductivity. 57Fe-Mössbauer spectra of xFeV glass could be described by one doublet and showed a constant isomer shift of 0.25 mm s⁻¹ and decreasing quadrupole splitting from 0.73 to 0.63 mm s⁻¹, indicating that Fe^{III} ion forms less distorted tetrahedra upon increasing 'x' from 5 to 45 mol%. ¹¹⁹Sn-Mössbauer spectra of xSnV glass-ceramics nanocomposite, containing also only one doublet, showed an isomer shift increasing from 0.033 to 0.077 mm s⁻¹ and decreasing quadruple splitting value from 0.526 to 0.520 mm s⁻¹, with increasing 'x' from 5 to 45 mol%. Additionally, a high capacity of about 200 mAh g-1 was achieved for the SIB made of 5FeV glasses as a cathode. This capacity was larger than the previously reported value of 158 mAh g⁻¹ in $Na_{1,25}V_3O_8$. In particular, the high capacity was maintained for up to 30 recharging cycles. The same changes were observed in the xSnV glass-ceramics nanocomposite. Therefore, it can be concluded that the introduction of Fe or Sn ions into the phospho-vanadate glass as a cathode causes an increase in durability and conductivity, so these glasses can be considered promising for a highperformance cathode active material with significant improvement of cyclability in sodium-ion batteries.

4 Conclusion

Sodium Vanadate Phosphate glasses with the addition of iron or tin oxides and their glass and glass-ceramics nanocomposite of the composition of $xNa_2O(85-x)$ $V_2O_5 \cdot 10P_2O_5 \cdot 5Fe_2O_3$ and $xNa_2O(85-x)$ $V_2O_5 \cdot 10P_2O_5 \cdot 5SnO_2$ (x=5, 25 and 45 mol%) were investigated in as prepared and heat-treated form by different techniques as DTA, XRD, Mössbauer spectroscopy, DC four-probe method and chargedischarge capacity. The DTA study of xFeV and xSnV glasses with increasing Na₂O content from 5 to 45 mol% showed a decrease in crystallization temperature (T_c) and glass transition temperature (T_g) with increasing Na₂O content. Meanwhile, the Tc and T_g increased for xFeV and xSnV as compared to xV. The Tc and T_g were increased after adding Fe₂O₃ and SnO₂ to the previous glasses system (xV). These results indicated that introducing iron and tin increases the thermal stability of the glass network. This indicates that the 3D V-O network basic construction was splitting into VO₅ and VO₄ substructures by increasing Na₂O content. XRD study of xFeV and xSnV showed an amorphous structure similar to previously investigated xFeV samples. At the same time, some crystals phases appeared increasingly in xSnV, forming glass-ceramics nanocomposite with particle sizes ranging from 28 to 33 nm. The crystallinity increased with increasing Na2O content. Also, we conclude that the results of XRD of xFeV

showed that after heat treatment, several crystalline phases formed: Na_{0.282}V₂O₅, V₂O₅, Na_{0.282}V₂O₅, Na_{1.1}V₃O_{7.9}, NaVO₃ and Na_{1.164}V₃O₈· Also, the crystallite size of xFeV glass-ceramics increased from 26 to 39 (nm) with 'x' of 5 to 45 mol%. The crystal size values of xSnV glassceramics nanocomposite decreased from 37 to 30 (nm), with 'x' of 5 to 25 mol% Na₂O content. ⁵⁷Fe Mössbauer spectra of xFeV glasses where 5 mol% of Fe₂O₃ is substituted for V₂O₅ showed a decrease in quadrupole splitting (Δ) with the increase of Na₂O content, indicating a decrease in the distortion of the iron polyhedral. ¹¹⁹Sn Mössbauer spectra of xSnV glass-ceramics nanocomposite where 5 mol% of SnO_2 is substituted for V_2O_5 showed an increase in Δ with the increase of Na₂O content, referring to that the structure transforms from tetrahedral to octahedral Sn⁴⁺. Electrical conductivity for xFeV and xSnV before heat treatment decreased from 2.82×10^{-5} to $6.61 \times$ 10^{-7} S cm⁻¹ and 1.26×10^{-5} to 4.27×10^{-7} S cm⁻¹ with increasing Na₂O content from 5 to 45 mol%, respectively. While 5FeV had higher electrical conductivity than any other prepared samples, the electrical conductivity of xFeV samples showed decreasing values as the Na₂O content was increased. This result may be attributed to the decrease in V₂O₅ content. According to the data obtained from charge and discharge capacity, it is concluded that 25FeV (BHT), 5FeV (AHT), 5SnV (BHT), 5SnV (AHT) and 25SnV (BHT) glass and/or glasses-ceramics nanocomposite can be considered good candidates for using as a cathode material for Na-ion batteries because of the large capacity of 142, 110, 162, 103 and 114 mAh g⁻¹ recorded at room temperature after 30 cycles.

<u>Acknowledgement</u>

The author (SK) expresses his gratitude for the financial support from the TMU fund for international collaboration and National Grant-in-aid for Scientific Research (23H02070, 15H03882, 23550238).

References

- [1]H. Zhang, et al., Angew. Chem., Int. Ed., 60, 598(2021).
- [2]N. Yabuuchi et al., Chem. Rev., 114(23), 11636 (2014).
- [3]R. S. Carmichael, Practical Handbook of Physical Properties of Rocks and Minerals; CRC Press: Boca Raton, FL (1989).
- [4] Y. Liu et al., Mater. Chem. A, 7, 4353(2019).
- [5] M.E.A. Dompablo et al., Chem. Rev., 120, 6331 (2019).
- [6]K.S. Kim *et al.*, Atomic Scheduling of Appliance Energy Consumption in Residential Smart Grids, Energies, **12**, 19 (2019).
- [7]D. Aurbach et al., Nature, 407, 13 (2000).
- [8]T. Jin et al., Chem. Soc. Rev., 49, 2342(2020).
- [9]N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, Research development on Sodium-Ion Batteries, Chem. Rev., 114 (2014) 1166–11682.
- [10]H. Horie, Lithium-ion battery; Baifu-kan, Tokyo (2010).
- [11]Y. Cai et al., J. Power Sources, 328, 241(2016).
- [12]P. S. Kumar et al., ACS Omega, 3, 3036 (2018).
- [13] R.K. Brow, J. Non-Cryst. Solids, 263&264 1 (2000).

- [14]A. Ibrahim and M.S. Sadeq, Ceram. Int., 47, 28536 (2021).
- [15]S. Kubuki et al., Hyperfine Interact., 226, 765(2014).
- [16]S. Kubuki *et al.*, *J. Non-Cryst. Solids*, **570**, 120998 (2021).
- * kubuki@tmu.ac.jp