BL-9C, BL-12C, AR-NW10A/2021G546 Investigation of stable Ag–Ni–ZrO₂ photocatalyst for sustainable photocatalytic CO₂ reduction into fuels

Rento Ishii, Tomoki Oyumi, and Yasuo Izumi*

Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku Chiba 263-8522, Japan

1. Introduction

To create a new carbon neutral cycle, $Ni-ZrO_2$ photocatalyst was investigated to convert CO_2 into methane [1]. The Ni nanoparticles need to be metallic (valence zero) for the best performance, methane formation rate of 0.98 mmol h⁻¹ g_{cat}⁻¹. However, a few nanometers Ni particles easily oxidized in air and are difficult to handle in practical applications. In this proposal, secondary metal was deposited to Ni–ZrO₂ and the Ni⁰ site was tried to be stable for the sustainable application for CO₂ photocatalytic reduction into fuels.

2. Experimental section

Ni–ZrO₂ photocatalyst was prepared via liquid phase reduction method from Ni(NO₃)₂ [1]. Then, Ag was deposited on Ni–ZrO₂ photoelectrochemically. Namely, Ag(NO₃) ethanol solution (50 mmol L⁻¹) was mixed with Ni–ZrO₂ powder and irradiated under UV–visible light for 3–6 h. The suspension was filtered and dried at 373 K. The amount ratio of Ni: Ag used was 1: 10.

3. Results and Discussion

The normalized XANES spectra for Ag–Ni–ZrO₂ photocatalysts that were irradiated under UV–visible light for 3 h and 6 h were compared to those of Ni metal and NiO standard samples (Figure 1). Apparently, Ni sites were oxidized to NiO during drying of Ni⁰–ZrO₂ sample obtained via liquid phase reduction. Because the Ni^{II} sites were not reduced under the irradiation of UV–visible light immersed in Ag⁺ ethanol solution, we reduced Ag–Ni–ZrO₂ photocatalysts under H₂ at 723 K (Figure 1).

Alternatively, we performed photoelectrochemical deposition of Ag^+ on Ni– ZrO_2 without contact to air during the later stage than liquid phase reduction. In such preparation, Ni sites remained metallic Ni^0 (data not shown).

In this report, the Debye–Waller factor changes for $Ag-Ni-ZrO_2$ photocatalysts reduced under H_2 at 723 K were monitored by Ni K-edge EXAFS under the irradiation of UV–visible light at beamline (Figure 2). Clearly, Ni sites were quickly warmed by light energy and reached thermal equilibrium while the temperature very quickly dropped to room temperature when the UV–visible light was turned off (Figure 2).

Figure 1. Normalized Ni K-edge XANES spectra for Ag–Ni– ZrO_2 photocatalysts that were irradiated under UV–visible light for 3 h and 6 h and the one irradiated under UV–visible light for 6 h was further reduced under H₂ at 723 K in comparison to standard spectra for Ni metal and NiO.

Figure 2. Time course of Co K-edge EXAFS Fourier transform for Ag–Ni–ZrO₂ photocatalysts that were irradiated under UV– visible light for 6 h and then reduced under H₂ at 723 K (A) under UV–visible light irradiation at beamline and (B) UV– visible light off.

Reference

 Zhang, H.; Itoi, T.; Konishi, T.; Izumi, Y. Efficient and Selective Interplay Revealed: CO₂ Reduction to CO over ZrO₂ by Light with Further Reduction to Methane over Ni⁰ by Heat Converted from Light. *Angew. Chem. Int. Ed.* **2021**, *60*, 9045–9054.

* yizumi@faculty.chiba-u.jp