是石和樹¹,相馬拓人¹,組頭広志^{2,3},大友明¹ ¹東工大物質理工,〒152-8552 東京都目黒区大岡山 2-12-1 ²東北大多元研,〒980-8577 宮城県仙台市青葉区片平 2-1-1 ³高エネ研,〒305-0801 茨城県つくば市大穂 1-1 Kazuki KOREISHI^{1,*}, Takuto SOMA¹, Hiroshi KUMIGASHIRA^{2,3}, and Akira OHTOMO¹ ¹Tokyo Tech., Dept. Chem. Sci. Eng., 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan ²Tohoku Univ., IMRAM 2-1-1, Katahira, Sendai, Miyagi 980-8577, Japan ³KEK-IMSS, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

1 はじめに

近年注目されるワイドギャップ半導体 β -Ga-2O₃(GO)は、Al₂O₃やIn₂O₃との混晶化によりバンドギ ャップ制御が可能である.一方で我々は、新しいバ ンドギャップ制御の手段として Sc₂O₃ との混晶化を 試み、Sc 置換による分光学的バンドギャップ(E_g)の 増大を確認した.本研究では、 E_g の増大とバンド構 造の関連を明らかにするために β -Ga₂O₃/ β -(Sc_xGa_{1-x})₂O₃(SGO)へテロ接合を作製し、放射光光電 子分光(PES)を用いて、界面のバンドオフセットを 評価した.

2 実験

酸素ラジカル支援パルスレーザ堆積(PLD)法により、 β -Ga₂O₃(100)基板上に(i)GO(100 nm),(ii)SGO (20 nm, x = 0.17, 0.32),(iii)GO(~3 nm)/SGO(20 nm, x = 0.17, 0.32)の薄膜構造を作製した. X 線回折測定から薄膜の構造を評価し、単相かつコヒーレント成長した薄膜が得られていることを確認した. Sc 組成はオージェ電子分光法により決定した.

β-Ga₂O₃に対する価電子帯オフセット(ΔE_V)は, (i)– (iii)の Ga 3p および Sc 2p 内殻と価電子帯上端(VBM) の PES スペクトルから求めた.また、 ΔE_V と反射型 電子エネルギー損失分光法(REELS)から求めた E_g か ら、伝導帯オフセット(ΔE_C)を求めた. PES 測定は、 BL-2A に常設された光電子分光測定装置を用いて室 温、hv = 800 eVの条件で行った.

3 結果および考察

図1に,薄膜試料(i),(ii)のREELSスペクトルを示 す.スペクトルの立ち上がり位置から推定した *E*gは, Sc 組成の増大に伴い増大することが確認された.図 2 に,(i)-(iii)の試料に対して得られた PES スペクト ルを示す.各スペクトルの束縛エネルギーを炭素の 1*s*ピークによって補正し,以下の式からΔ*E*vを求め た[1].

$$\Delta E_{\rm V} = E_2 - E_1 - E_3, E_1 = E_{\rm Ga \ 3p}^{(i)} - E_{\rm VBM}^{(i)}, \\ E_2 = E_{\rm Sc \ 2p}^{(ii)} - E_{\rm VBM}^{(ii)}, E_3 = E_{\rm Sc \ 2p}^{(iii)} - E_{\rm Ga \ 3p}^{(iii)}$$

表 1 に,以上の結果から得られた E_g , ΔE_v , ΔE_c を まとめる. ΔE_v はいずれの Sc 組成においても 0.1 eV より小さく,測定誤差(~±0.1 eV)を踏まえると, E_g

図 1.β-(Sc_xGa_{1-x})₂O₃薄膜(x=0,0.17,0.32)の REELS スペクトル

図 2. (a)GO 薄膜, (b), (c)SGO 薄膜, GO/SGO 界 面(x=0.17), (d), (e)SGO 薄膜, GO/SGO 界面 (x=0.32)の PES スペクトル.

の増大はほぼ ΔE_c の寄与によるものだと言える. こ の傾向は β -Ga₂O₃/ β -(Al_xGa_{1-x})₂O₃界面においても確認 されており[2], VBM が主に局在化した O 2p 軌道か ら成ることに由来すると考えられる.

表 1. 各 Sc 組成における E_g , ΔE_V , ΔE_C

Sc content	$E_{\rm g}({\rm eV})$	$\Delta E_{\rm V} ({\rm eV})$	$\Delta E_{\rm C} ({\rm eV})$
0	4.62	0	0
0.17	4.96	-0.02	0.32
0.32	5.13	-0.07	0.44

4 <u>まとめ</u>

PLD 法で作成した薄膜試料に対して放射光 PES 測 定を行い、 β -Ga₂O₃/ β -(Sc_xGa_{1-x})₂O₃ ヘテロ界面のバン ドオフセット(ΔE_v , ΔE_c)を決定した. その結果, E_g の増大は主に ΔE_c に起因することが分かった. これ は、n型半導体である β -Ga₂O₃に対して SGO 薄膜を バリア層として利用できることを示しており、ヘテ ロ接合構造を用いた変調ドーピングや量子井戸のサ ブバンド間遷移の制御が期待できる.

参考文献

- [1] E. A. Kraut et al., Phys. Rev. Lett. 44, 1620 (1980).
- [2] R. Wakabayashi *et al.*, *Appl. Phys. Lett.* **112**, 232103 (2018).

* koreishi.k.aa@m.titech.ac.jp