Debye–Waller factor analysis of Co^0 site on ZrO_2 under CO_2 , H_2O , H_2 , and UV–visible light irradiation

Tomoki Oyumi, Rento Ishii, and Yasuo Izumi*

Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku Chiba 263-8522, Japan

1. Introduction

In contrast to the irreversible consumption of fossil fuel and raw materials, the conversion of CO₂ into fuels and/or valuable chemicals using a sustainable energy represents a pivotal step toward establishing a new carbon-neutral cycle. The economically viable photocatalytically formed C₂ and C₃ hydrocarbons derived from photocatalytic CO₂ reduction have emerged as key chemicals (0.9–8 \$ kg⁻¹) compared to CO and CH₄ (0.06–0.18 \$ kg⁻¹). We reported the EXAFS analysis for the switchover of photocatalytic pathways from CO₂ to C_{1–3} paraffin versus from CO to selective C₂H₄ and C₃H₆, using a Co⁰–ZrO₂ catalyst [1,2]. In this report, the valence state, structure, and the temperature of the Co site was monitored under CO₂, H₂O, H₂, and UV–visible light irradiation.

2. Experimental section

Cobalt K-edge XAFS spectra were measured in the transmission mode at the Photon Factory, High Energy Accelerator Research Organization (Tsukuba, Japan) on the 9C beamline using a Si(1 1 1) monochromator, a Pt-coated mirror, and a piezo transducer. The Co–ZrO₂ samples were treated in a quartz U-tube and transferred to a Pyrex cell filled with reaction gases, which was equipped with a polyethylene terephthalate film (Toyobo, Japan, G2, 50 μ m thick) on both sides for both UV–visible light and X-ray transmission. A 500 W Xe arc lamp (Model SX-UID502XAM, Ushio) was used as the light source, with the distance between the fiber light exit of the Y-shaped quartz light guide and the photocatalyst set at 2 cm.

The obtained Co K-edge XAFS data were analyzed using the XDAP software package version 3.2.9 [3]. Multiple-shell curve-fit analyses were performed with the data obtained on the EXAFS using the empirical amplitude extracted from the EXAFS data for the Co metal foil (10 μ m thick).

3. Results and Discussion

 $^{13}CO_2$ (2.3 kPa) photoreduction using D₂O (2.2 kPa), H₂ (21.7 kPa), and Co–ZrO₂ photocatalyst reduced in H₂ at 823 K formed ^{13}C -methane with a D ratio of 9.2 mol%, which agrees with a D ratio in the reactants (9.1 mol%) [4]. This suggests that D₂O and H₂ reached equilibrium more rapidly and were shuffled over Co⁰ more efficiently than the progressive hydrogenation steps to C_{2,3} paraffin common under either H₂ or H₂O.

The methane formation rate was the 9.6% of that observed using H_2 owing to the competitive adsorption of OH on the Co⁰ surface and/or H_2O adsorption at the oxygen

vacancy site of ZrO_2 [4]. However, during photocatalytic CO_2 reduction tests under H_2O (2.3 kPa) and H_2 (21.7 kPa; Figure 1) through Co K-edge EXAFS, the Co^{II} species could not be detected. This demonstrates that the metallic Co surface effectively activates H_2O for $C_{2,3}$ paraffin photosynthesis using either H_2 or H_2O (g).

Furthermore, the quick temperature increase when the UV-visible light was turned on (Figure 1A) and quick temperature decrease when the light was turned off (Figure 1B) were also demonstrated based on the peak intensity change in the Fourier transform owing to the change of Debye–Waller factor for the Co–Co interatomic pair.

Figure 1. Time–course change of the Fourier transform of the angular wave number k^3 -weighted EXAFS χ -unction for the Co (7.5 wt %)–ZrO₂ photocatalyst reduced in H₂ at 973 K under CO₂ (2.3 kPa), H₂O (2.3 kPa), and H₂ (21.7 kPa) (A) during irradiation under UV–visible light and (B) under dark.

References

- [1] Oyumi, T.; Ishii, R.; Izumi, Y. *Photon Factory Activity Report* 2022, **2023**, 40, 2022G527. http://pfwww.kek.jp/acr/2022pdf/u_reports/pf22b0086.pdf
- [2] Loumissi, T.; Oyumi, T.; Yu, J.; Ishii, R.; Izumi, Y. Photon Fac. Act. Rep. 2021 2022, 39, 2019G141. http://pfwww.kek.jp/acr/2021pdf/u_reports/pf21b0145.pdf
- [3] Vaarkamp, M.; Linders, H.; Koningsberger, D. XDAP Version 3.2.9.; XAFS Services International: Woudenberg, The Netherlands, 2022.
- [4] Loumissi, T.; Ishii, R.; Hara, K.; Oyumi, T.; Abe, I.; Li, C.; Zhang, H.; Hirayama, R.; Niki, K.; Itoi, T.; Izumi, Y., 3rd revision submitted to *J. Am. Chem. Soc.* on March 30, 2024.
- * yizumi@faculty.chiba-u.jp