模擬廃棄物ガラス凝固表面の放射光分析 Synchrotron analysis of coagulated surface of simulated waste glasses

永井崇之^{1,*}, 勝岡菜々子¹, 岡本芳浩², 馬場祐治³, 秋山大輔⁴

- 1日本原子力研究開発機構・核燃料サイクル工学研究所,〒319-1194 東海村村松 4-33
- 2日本原子力研究開発機構・物質科学研究センター,〒679-5148 佐用町光都 1-1-1
 - 3日本原子力研究開発機構・先端基礎研究センター,〒319-1195 東海村白方 2-4

⁴ 東北大学·多元物質科学研究所, 〒980-8577 仙台市青葉区片平 2-1-1

Takayuki Nagai^{1,*} Nanako Katsuoka¹ Yoshihiro Okamoto² Yuji Baba³ and Daisuke Akiyama⁴ ¹Nuclear Fuel Cycle Engineering Lab., JAEA, 4-33 Muramatsu, Tokai-mura, 319-1194, Japan

²Materials Sciences Research Center, JAEA, 1-4-1 Koto, Sayo-cho, 679-5148, Japan
³Advanced Science Research Center, JAEA, 2-4 Shirakata, Tokai-mura, 319-1195, Japan
⁴IMRAM, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan

1 <u>はじめに</u>

JAEAは、核燃料再処理工場で発生した高レベル 放射性廃液のガラス固化体製造技術を確立し、技術 の高度化を目指した研究開発を進めている.筆者ら は、ガラス固化に係る基盤的知見の充実を図るため、 原料ガラス組成や溶融条件による廃液成分元素の化 学状態への影響をXAFS測定等により評価している.

本研究は、ガラス組成や溶融条件によってCe原子 価が変化することに着目し、廃液成分を単純化した 模擬ガラス固化体試料を作製して、凝固ガラス表層 とガラス内部のCe原子価状態の差異を確認するため、 模擬ガラス固化体試料を放射光XAFS測定した. XAFS測定は、BL27BにおいてCeのL₃吸収端を、 BL27AにおいてSiのK吸収端を蛍光法で行った.

2 <u>実験</u>

放射光 XAFS 測定に供した模擬ガラス固化体試料 の組成を、表1に示す. Na₂Oを含むガラス固化体用 原料ガラスビーズを粉砕し、この原料ガラス粉末へ 所定量の CeO₂, Fe₂O₃ 及び Cr₂O₃ の粉末試薬を添加 して乳鉢で均一に混合した. 試料中の Ce 濃度を 0.20 mol%, Fe 濃度を 3.00 mol%に揃え, Cr 濃度を 0.00~ 0.20 mol%に調整した.

表1 模擬ガラス固化体試料の組成(単位:mol%)

	FC00	FC01	FC02	FC05	FC10	FC20
SiO ₂	54.17	54.16	54.15	54.12	54.08	53.99
B_2O_3	14.26	14.25	14.25	14.25	14.23	14.21
Al_2O_3	3.43	3.43	3.43	3.43	3.43	3.42
CaO	3.73	3.73	3.73	3.72	3.72	3.71
ZnO	2.57	2.57	2.57	2.57	2.56	2.56
Li ₂ O	6.99	6.99	6.99	6.99	6.98	6.97
Na ₂ O	9.37	9.36	9.36	9.36	9.35	9.33
Fe_2O_3	4.84	4.84	4.84	4.84	4.84	4.84
Cr_2O_3		0.02	0.03	0.08	0.16	0.32
CeO ₂	0.65	0.65	0.65	0.65	0.65	0.65

混合粉末を蓋付アルミナ製ルツボに装荷して,大 気下のマッフル炉内で加熱溶融した.加熱は,室温 から2hで1200℃まで昇温して2.5h保持した(撹 拌操作無し)後,室温まで炉内で自然冷却した.冷 却後にルツボを破砕してガラス塊を回収し,鉛直方 向にガラス塊を破断して測定に供した.

模擬ガラス固化体試料の凝固ガラス表層と破断面 平滑部(ガラス内部)を対象に, Ce の L₃吸収端等 の XAFS 測定を行った.

3 結果および考察

Ce の L₃吸収端 XAFS 測定で得られた凝固ガラス 表層及びガラス内部(破断面平滑部)の XANES ス ペクトルを図 1,2 に示す. 凝固ガラス表層は,Cr 濃度が高いガラスほど Ce の4価由来の5.735 keV ピ ークが上昇し,3価由来の5.724 keV ピークが低下し た.一方,ガラス内部はCr 濃度に関係なく,3価由 来のピークのみを観察した.

図 2 模擬ガラス固化体試料のガラス内部(破断面 平滑部)の Ce-L₃吸収端 XANES スペクトル

Ce(III)ガラスとCeO2粉末のスペクトルを基準に, 各測定試料のスペクトルからCe原子価の割合を算 出した.図3に示すように,凝固ガラス表層のCe原 子価は,ガラス内部と比較して4価割合が多い酸化 状態にあり,廃液成分(Fe2O3, Cr2O3, CeO2)濃度が 高くなると4価割合が高くなることを確認した.

図3 模擬ガラス固化体試料の凝固ガラス表層とガ ラス内部の Ce 原子価割合

次に、Ce原子価割合の変化原因を検討するため、 ガラス構成元素であるSiのK吸収端をXAFS測定した. 凝固ガラス表層のSiのK吸収端 XANESスペクトルは、図4に示すようにいずれの試料も類似であるが、K吸収端ピークに僅かな差が認められる.

Na₂O 濃度を変えた原料ガラス切断面の Si の K 吸 収端ピークのエネルギー値は,図 5 に示すように Na₂O 濃度とともに低下する傾向がある^[1].図 5 に凝 固ガラス表層の値を併記すると、廃液成分濃度による影響が加味されるが、FC20 試料凝固ガラス表層の値は Na₂O 濃度 15 mol%原料ガラスの値に相当する.このことから、凝固ガラス表層の Na₂O 濃度はガラス全体の平均 Na₂O 濃度より高く、凝固ガラス 表層の Na₂O 濃度が Ce 原子価割合に影響を与えている可能性が考えられる.

 図 4 模擬ガラス固化体試料の凝固ガラス表層の Si-K吸収端 XANES スペクトル

図 5 カフス中の Na₂O 濃度と Si-K 吸収端ヒークの エネルギー値の相関

4 <u>まとめ</u>

本研究の結果から、模擬ガラス固化体試料中のCe は、ガラス組成によって原子価が変化し、凝固ガラ ス表層のCeはガラス内部より酸化状態にあること を確認した.実規模の模擬ガラス固化体試料におい ても凝固ガラス表層とガラス内部で差異を確認して おり^[2]、引き続き評価研究を行う予定である.

謝辞

PF 実験において、宇佐美先生及び放射線管理室の 方々にご協力頂きました.ここに謝意を表します.

参考文献

[1] 永井, 他, PF Act. Rep.2020 #38, pf20b0067 (2021).

Photon Factory Activity Report 2023 #41 (2024)

[2] 永井, 長谷川, JAEA-Research 2023-008 (2023).

* nagai.takayuki00@jaea.go.jp