Electronic states of perovskite-type bismuth iron oxyfluoride thin films

Akiko KAMIGAITO,^{1,*} Mizuho SANO,¹ Kei SHIGEMATSU,² Hiroshi KUMIGASHIRA,³ Tsukasa KATAYAMA,^{4,5} Yasushi HIROSE,⁶ and Akira CHIKAMATSU¹

¹Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka,

Bunkyo-ku, Tokyo 112-8610, Japan

²Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta,

Midori-ku, Yokohama, Kanagawa 226-8503, Japan

³Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira,

Aoba-ku, Sendai 980–8577, Japan

⁴Research Institute for Electronic Science, Hokkaido University, N21W10 Kita,

Sapporo, Hokkaido 001-0020, Japan

⁵JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

⁶Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa,

Hachioji, Tokyo 192-0397, Japan

1 Introduction

Multiferroic materials such as BiFeO₃ have attracted attention because of the unique property of having both ferroelectricity and magnetic ordering. Recently, polycrystalline forms of bismuth iron oxyfluoride (Bi1- $_x$ Ba_xFeO_{3-x}F_x; x = 0.2, 0.3), in which fluorine replaces some of the oxygen in Ba-doped bismuth iron oxide Bi1-_xBa_xFeO_{3-x/2}, have been synthesized and exhibit a G-type antiferromagnetic ordering with Néel temperature above 770 K [1]. First-principles calculations also predicted that Bi_{0.75}Ba_{0.25}FeO_{2.75}F_{0.25} exhibits multiferroic properties [2]. In this study, we fabricated epitaxial thin films of Bi₁₋ $_{x}Ba_{x}FeO_{3-x}F_{x}$ (x = 0, 0.1, 0.2, 0.3) and Bi_{0.6}Ba_{0.4}FeO_{3-y}F_z on SrTiO₃ (001) substrates via topochemical fluorination of the $Bi_{1-x}Ba_xFeO_{3-x/2}$ precursor and subsequently measured their electronic states by X-ray photoemission spectroscopy (XPS).

2 Experiment

Precursor Bi_{1-x}Ba_xFeO_{3-x/2} (x = 0, 0.1, 0.2, 0.3, 0.4) epitaxial thin films were deposited on SrTiO₃(100) substrates doped with 0.5 wt% Nb by pulsed-laser deposition. The obtained Bi_{1-x}Ba_xFeO_{3-x/2} thin films were further subjected to fluorination using polyvinylidene difluoride at 200 °C for 12 h in Ar gas flow. The typical thickness of the films was set to ~130 nm.

Crystal structures of the films were investigated by Xray diffraction, and chemical compositions were evaluated by energy dispersive X-ray analysis. F 1s, Fe 2p, and valence band XPS spectra were measured at 300 K using a VG-SCIENTA SES-2002 electron-energy analyzer with an energy resolution of 300 meV at a photon energy of 1200 eV. The Fermi level was calibrated against the C 1s signal.

3 Results and Discussion

In order to investigate whether F has been introduced into the fluorinated films, the core-level XPS spectra of F 1s and Bi $4p_{3/2}$ were obtained for the Bi_{1-x}Ba_xFeO_{3-x/2} (x =0, 0.1, 0.2, 0.3, 0.4) precursor and fluorinated films. Figure 1 shows the F 1s and Bi $4p_{3/2}$ core-level XPS spectra of the fluorinated Bi_{1-x}Ba_xFeO_{3-x/2} (x = 0, 0.2) films. The F 1s peak was clearly observed in the x = 0.2 film, confirming the presence of F in the film. The F 1s peaks were also observed in the XPS spectra of the other Bi_{1-x}Ba_xFeO_{3-x/2} (x = 0.1, 0.3, 0.4) fluorinated films. On the other hand, as shown in Fig. 1, no F 1s peak was observed in the spectrum of BiFeO₃. These results suggest that oxygen vacancies in the precursor films play an important role in the introduction of fluorine.

Fig. 1: F 1s and Bi $4p_{3/2}$ core-level XPS spectra of the fluorinated $Bi_{1-x}Ba_xFeO_{3-x/2}$ (x = 0, 0.2) acquired at 300 K.

Figure 2 shows the Fe 2p core-level XPS spectra of $Bi_{0.8}Ba_{0.2}FeO_{2.9}$ precursor and fluorinated $Bi_{1-x}Ba_xFeO_{3-x/2}$ (x = 0, 0.1, 0.2, 0.3, 0.4) films. Each core-level spectrum is characterized by an Fe 2p_{1/2}–Fe 2p_{3/2} doublet and a weak satellite located between the doublet peaks; the positions of these peaks were unaffected by fluorination. The Fe 2p satellite peak and its position is known to be very sensitive to the Fe oxidation state [3]. A comparison of the spectra in Fig. 2 with previously reported XPS spectra of various

Fe oxides of Ref. 3 revealed that Fe exists in its trivalent oxidation state in the precursor and fluorinated films. It was also confirmed that the $Bi_{1-x}Ba_xFeO_{3-x/2}$ precursor films with other compositions have trivalent Fe ions. Thus, it can be concluded that topochemical fluorination at 200 °C does not affect the Fe oxidation state.

Fig. 2: Fe 2p core-level XPS spectra of $Bi_{0.8}Ba_{0.2}FeO_{2.8}$ precursor and fluorinated $Bi_{1-x}Ba_xFeO_{3-x/2}$ (x = 0, 0.1, 0.2, 0.3, 0.4) films acquired at 300 K.

Figure 3 shows the valence band spectra of the Bi₁. $_x$ Ba_xFeO_{3-x/2} (x = 0.1, 0.2, 0.3) precursor and fluorinated films. These spectra have been normalized to the maximum peak heights. According to density of states predicted by the density functional theory calculations [2], the structures A and B can be derived from O 2p bonding states and Fe 3d bonding states, respectively. In addition, in Fig. 3(b) and 3(c), the spectra of the fluorinated films have new spectral structure C: ~6 eV for x = 0.2 and ~5.5 eV for x = 0.3, respectively. This new state is due to the 2p bonding states associated with fluorine, which has a higher electronegativity than oxygen. Furthermore, for x = 0.2 and x = 0.3 fluoride films, attenuation of the structure A was observed. The degree of attenuation is greater for x = 0.3, which has a higher fluorine content, to the extent that the valence band maximum appears to shift to a higher region (Fig. 3(c)). These results suggest that the valence band change of Bi_{1-x}Ba_xFeO_{3-x/2} films by fluorination is different depending on their composition, and the change is larger in the more fluorine-rich films.

Fig. 3: Valence band XPS spectra of the precursor and fluorinated $Bi_{1-x}Ba_xFeO_{3-x/2}$ (a) x = 0.1, (b) x = 0.2, and (c) x = 0.3 films acquired at 300 K.

References

- [1] O. Clemens et al., Inorg. Chem. 53, 12572 (2014).
- [2] S. Rahimi et al., Phys. Rev. B 106, 115205 (2022).
- [3] T. Yamashita et al., Appl. Surf. Sci. 254, 2441 (2008).

* g2340634@edu.cc.ocha.ac.jp