In situ 全反射 X 線分光法を用いたステンレス表面高温酸化過程の観察および 耐高温酸化性付与アルミナコーティング剤添加イオン効果の検討

In situ TREXS Analysis of Stainless Plates During High Temperature Oxidation Process and Investigation of the Effect of a Dopant in Protective Alumina Coating

阪東恭子1,*,小平哲也1,久保利隆1,阿部仁2,3,4,丹羽尉博2,3,魯邦5,董凱悦5,高草木達5

1産業技術総合研究所,〒305-8565 茨城県つくば市東 1-1-1

2高エネルギー加速器研究機構物質構造科学研究所,〒305-0801茨城県つくば市大穂 1-13

総合研究大学院大学, 〒305-0801 茨城県つくば市大穂 1-1

⁴茨城大学大学院理工学研究科,〒310-8512茨城県水戸市文京2-1-1

5 北海道大学 触媒科学研究所, 〒001-0021 北海道札幌市北区北 21 条西 10 丁目

Kyoko BANDO^{1, *}, Tetsuya KODAIRA¹, Hitoshi ABE^{2,3,4}, Yasuhiro NIWA^{2,3}, Bang LU⁵, Kaiyue DONG⁵, Toru TAKAKUSAGI⁵

¹National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

²Institute of Materials Structure Science, High Energy Accelerator Research Organization,

1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

³The Graduate University for Advanced Studies, SOKENDAI,

1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

⁴Graduate School of Science and Engineering, Ibaraki University,

2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan

⁵Institute for Catalysis, Hokkaido University,

Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan

1 <u>はじめに</u>

ステンレスは強靭で耐環境性も高く、工業用部材 から生活用品に至るまで様々な用途で広く用いられ ている。しかしながらステンレスを大気中で1000℃ に近い高温にさらすと、その内部まで酸化され脆化 してしまうブレークアウェイ酸化が進行する。ステ ンレスの耐高温酸化性を向上させる手法の一つとし て、酸素バリア性のあるコーティング剤で表面をコ ートする方法が検討されてきている。例えば、形状 制御されたベーマイト(AlO(OH))ナノ粒子を分散さ せたゾル(高温処理によりアルミナに相変化するの で、前駆体であるベーマイト分散ゾルを以下アルミ ナゾルと呼ぶ)をステンレス表面にコートすること により、耐酸化性を 200 ℃近く向上させることがで きるが[1]、900 ℃以上の高温状態ではブレークアウ ェイ酸化が起こり、表面は褐色に変色する。コーテ ィング剤の性能向上を検討する中で、アルミナゾル に Ce や Zr のイオンを添加することで耐高温酸化性 が向上することが見いだされ[2]、1000 ℃での繰り 返し加熱処理後も表面の光沢が保たれることが示さ れた。そこで、本研究では、アルミナゾルに添加さ れたイオンが高温処理条件でどのように耐酸化性向 上に寄与しているのか解明することを最終目的とし、 ステンレス表面での構造変化を観察するために全反

射 X 線分光法(TREXS)[3,4,5]を用いて検討を行った。 TREXS は X 線を全反射する表面の数 nm にある構造 に関する情報を抽出することが可能な分析手法であ り、本研究のような表面反応を追跡する上で,強力 な手法となると期待した。

2 実験

試料として用いたステンレス板は、市販の厚さ1 mmのSUS304板であり、シャーリング裁断で所定の 大きさに切り出したものを、アセントンで超音波洗 浄をしたのち使用した。コーティングに用いたアル ミナゾルは川研ファインケミカル社製アルミナゾル CSA-110ADとアルミナゾル CSA-310ADであり、両 方とも50 nm×10 nmに形状制御されたベーマイト のナノ粒子を分散させたゾルである。特に CSA-310ADはCe,Zrのイオンが添加され耐高温酸化性が 向上したとされるコーティング剤である。これらの ゾルは、4倍、40倍、60倍に脱イオン水で希釈し、 ディップもしくは滴下した後に乾燥することで、 SUS304板にコートしている。

In situ TREXS 測定は、PF BL-9C, BL-9A, PF-AR NW2A で行った。PF BL-9C では、PF 阿部の開発したステンレス製 in situ TREXS セル[5]を用いて、20%O₂/Heガス流通下で室温から436℃までの加熱下で連続的に TREXS 測定を行った。PF BL-9A では、

さらに高温での加熱を目指して、北大高草木が開発 した石英製セル[6]にアルミナサンプルホルダーを組 み込んだセルを、偏向全反射蛍光 XAFS 測定用に開 発された4軸精密ステージに固定して[7]、全反射条 件になるように調整し、20%O2/He ガス流通下で室 温から 857 ℃までの加熱下で連続的に TREXS 測定 を行った。BL-9A, 9C ともに検出器はイオンチャン バー(I₀:100%N₂, I: 15%Ar+85%N₂)を用いた。PF-AR NW2A では、前述の PF BL-9A で用いた石英セルを 用いた測定システムを NW2A のビームラインの高さ に合わせて調整して使用し、蛍光体付きフォトダイ オードアレイで反射光を測定した[3,8]。PF BL-9A, 9C では、Grazing Angle は約 4.0 – 5.4 mrad で Cr Kedge から Fe K-edge までのエネルギーを Quick スキ ャンモードで測定し、PF-AR NW2A では Grazing Angle を約8.8 mrad の条件にて Dispersive モードで Ce LIII-edgeからCrK-edgeまでのX線をワンショットで 照射する測定法を用いた。さらに、PFBL-9Aではex situ モードで TREXS と蛍光 XAFS の同時測定も行っ た。

3 結果および考察

測定に用いたステンレス板は肉眼では平たんにみ えるが、レーザー顕微鏡で観察すると表面には 2µm 程度の凹凸がある。したがって、反射光の形状は図 1に示すように、ダイレクトビームと比較してかな り広がりのある形状になる。

図1 SUS304 板での X 線半割状態でのダイレク ト光と反射光。PF-AR NW2A Dispersive モードで 5660-6188 eVの X 線を照射した時の結果。

図2にはステンレス製 in situ TREXS セルを用いて 測定した、表面をコートしていない SUS304 板を 436℃までの加熱している状態でのFe K-edge EXAFS のフーリエ変換の変化を示す。バルクは金属状態で あるが、400℃付近から表面の Fe の酸化が進行し、 Distance が 0.17 nm の位置に Fe-O に帰属されるピー

図2 コートなし SUS304 に関して測定した in situ Fe K-edge TREXS のフーリエ変換スペクトル。

クが現れる。このことから、400 ℃ですでに再表面の Fe 原子の酸化が進んでくることが確認された。

図3は、表面をコートしていない SUS304 板に関 して900 ℃まで大気中で加熱処理した時の Dispersive モードで測定した Cr K-edge in situ TREXS の結果を 示す。加熱温度の上昇とともに、酸化された Cr が表 面に析出してくるので、Cr K-edge XANES の強度の 増大とともに、酸化された Cr種の寄与によるホワイ トラインの増大がみられる。さらに、加熱中 XANES の形状は徐々に変化する。プレエッジ領域 も 782 ℃から 896 ℃の間で特異的な構造が出現し 消失するなど、複数の酸化物相が混ざりながら形 成されている様子が確認できた。

図3 コートなし SUS304 板の Cr K-edge dispersive in situ TREXS 測定結果。

図4には石英製セルでアルミナゾル CSA-310AD をコートしたサンプルを 857 ℃まで加熱処理しなが ら測定した Ce L_{III}-edge の in situ TREXS スペクトル を示す。原料のゾルには元々Ce³⁺がドープされてい るため、Ce³⁺による寄与(5726.0 eV)が低温では優勢 であるが、Ce⁴⁺による寄与も 5736.9 eV に若干現れて いる。温度が 672 ℃では、Ce⁴⁺(5727.6, 5736.9 eV)が

図 4 アルミナゾル CSA-310AD をコートした SUS304の Ce L_{III}-edge in situ TREXS 測定結果。

優勢になり、さらに高温になると再び Ce³⁺が優勢になる変化がみられた。

最後に、全反射蛍光 XAFS で Ce L_{III}-edge を測定し た結果を図5に示す。これは個々のサンプルをそれ ぞれの温度で処理して ex situ 測定した結果である。 200, 800, 900, 1000 [°]C処理サンプルいずれも Ce³⁺の寄 与がメインであるが、900 [°]C以下では Ce⁴⁺の成分に よるピークも 5737.9 eV に表れている。1000 [°]C処理 サンプルではこの Ce⁴⁺のピークは完全に消え Ce³⁺の みとなっている。また、図4の in situ での測定結果 にくらべ ex situ 測定の結果では Ce⁴⁺の寄与は弱く、 加熱条件下でみられる Ce と状態が異なることが推 定される。このような Ce の価数変化が耐高温酸化 性と関連があるのか今後の検討課題としたい。

また、全反射蛍光 XAFS と同時に測定した TREXS を比較すると、Ceのように表面にしか存在しない成 分に関して大きな差はみられなかったが、Cr, Fe と いったバルクに含まれる成分に関しては、全反射蛍 光 XAFS にはバルクの金属成分による寄与が強く重 なってきた。これは試料表面のラフネスにより、全 反射しなかった入射 X線により励起されたバルクか らのシグナルも相当入ってきたためと考えられる。

図5 Ce L_{III}-edge ex situ 全反射蛍光 XAFS 結果。 各温度で処理したサンプルを室温大気下で測定。

4 まとめ

TREXSにより市販のステンレス表面の高温酸化過程 の in situ 観察、および耐高温酸化性を付与する コーティング剤にドープされたイオンの高温での状 態変化を in situ で観察することに成功した。得 られた結果をもとに耐高温酸化性発現機構の解明に つなげたいと考えている。金属板のような試料のご く表面付近の情報を得る手法として TREXS は大変 有効な方法であるということが確認できた。

謝辞

本研究に関して、コーティング剤をご提供くださ った川研ファインケミカル社永井直文博士、伊野庸 介氏に感謝申し上げます。また in situ TREXS 測定に ご協力いただいた北海道大学佐藤良昭研究員、物質 構造科学研究所城戸大貴特別助教に感謝申し上げま す。また、本研究は JURCC 課題番号 23DS0463, 23DS0319, 24DS0649, 24DS0671 の支援をうけて実施 されました。

参考文献

- [1] A. Sayano, et al., J. Ceramic. Soc. Jpn., **124**, (2016) 448.
- [2] 特開 2021-116466.
- [3] H. Abe, et al., J. Phys. Conference Series, 502 (2014) 012035.
- [4] H. Abe, et al., J. J. Appl. Phys., 55, 062401 (2016)
- [5] H. Abe, et al., AIP conference Proceedings, 2054, 040016 (2019).
- [6] D.-Y. Kim, et al., J. Am. Chem. Soc., 144, (2022) 14140–14149.
- [7] B. Lu, et al., J. Phys. Chem. C, 125, (2021) 12424 12432.
- [8] T. Matsushita, et al., Appl. Phys. Lett, 92, 024103 (2008).
- * kk.bando@aist.go.jp