λ相 Ti₃O₅の金属絶縁体転移に伴う回折強度の変化 Change in diffraction intensity accompanied by metal-insulator transition in λ-Ti₃O₅

吉松公平^{1,*} ¹東京科学大学物質理工学院 〒152-8552 東京都目黒区大岡山 2-12-1 Kohei YOSHIMATSU^{1,*} ¹Department of Chemical Science and Engineering, Institute of Science Tokyo 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

1 <u>はじめに</u>

λ相 Ti₃O₅は五つある結晶多形の一つで、室温準安 定相である。ナノサイズの試料でのみλ相 Ti₃O₅は安 定に存在し、光学特性や理論計算から基底状態は金 属と予測されてきた[1]。我々のグループでは電気伝 導測定が可能な大面積の薄膜単結晶合成に取り組み [2]、予測と異なりλ相 Ti₃O₅の基底状態は絶縁体で、 ~330 K で金属絶縁体転移を示すことを明らかにした [3]。本研究では、λ相 Ti₃O₅の金属絶縁体転移の起源 解明を目指し、放射光 X 線回折測定を行った。 2 実験

 λ 相 Ti₃O₅薄膜はパルスレーザ堆積法を用いて LaAlO₃ (110)基板上に合成した。原料ターゲットに はTiO₂単結晶基板を用い、基板温度を1100℃、酸素 圧力を 2.5×10⁻⁷ Torr に設定した。実験室でのX線回 折測定から、試料の面直配向は λ -Ti₃O₅ (100) // LaAlO₃ (110)、面内配向は λ -Ti₃O₅ [001]//LaAlO₃ [1-10] であることを確認した。放射光 X 線回折測定は KEK-PF BL-4C に常設の4軸X線回折計を用いた。 200-400 K の温度範囲で λ 相 Ti₃O₅ 800, 80±1 回折ピー クの測定を行った。用いた X 線のエネルギーは 8 keV (波長: 1.5498 Å) である。

3 結果および考察

はじめにλ相Ti₃O5の金属絶縁体転移の起源が結晶 中のTiサイトでの電子の局在化であると仮定し、Ti1 とTi₃を局在サイト[図1(b)]として構造因子によるhkl 回折ピークのシミュレーションを行った。その結果、 全ての hkl の中で、80±1 回折が局在状態と非局在状 態で強度が大きく異なることを見出した(表1)。 そこでλ相 Ti₃O5薄膜が金属絶縁体転移を示す 330 K を含む、200~400 K の温度範囲で 800, 80±1 回折の 放射光 X線回折測定を行ない、観測されたピークの 積分強度を算出した。その結果を図 1(a)に示す。高 温の金属状態から低温の絶縁体状態になるに従い、 80±1回折の強度が低下していることが見て取れる。 ここで、金属状態は Ti 3d 電子が非局在で Ti イオン はどのサイトも+3.33の平均価数を持っていると考 えて良い。一方で絶縁体状態の局在化パターンには いくつかの候補が考えられ、80±1回折強度はパター

ンに依存する(表 1)。そこで、金属状態と絶縁体 状態の回折強度比から絶縁体状態の局在状態を推定 した。その結果、 Ti_1 サイトと Ti_3 サイトの両方にTi3d 電子が局在する Ti^{3+} - Ti^{4+} - Ti^{3+} の電荷秩序構造が実 験とシミュレーションが最もよく一致することが明 らかとなった。

表 1. 構造因子を用いて計算した λ相 Ti₃O₅の 80±1回 折の 800 回折に対する相対強度。

	Ti ^{3.33+} -Ti ^{3.33+} -Ti ^{3.33+} (metallic)	Ti ³⁺ -Ti ⁴⁺ -Ti ³⁺ (insulating)	Ti ³⁺ -Ti ^{3.5+} -Ti ^{3.5+} (insulating)	Ti ^{3.5+} -Ti ^{3.5+} -Ti ³⁺ (insulating)
I ₈₀₁ /I ₈₀₀	1.51	0.85	1.42	0.83
I 80-1/I 800	0.16	9.37 × 10 ⁻²	4.15×10^{-2}	0.26

図 1. (a) 放射光 X 線回折測定で得られた λ 相 Ti₃O₅薄 膜の 80±1 回折強度の温度依存性。(b) λ 相 Ti₃O₅ の結晶構造と 3 つの Ti サイト。

4 <u>まとめ</u>

構造因子を用いたシミュレーションと放射光 X 線 回折測定により、絶縁体状態の λ 相 Ti₃O₅は Ti₁ サイ トと Ti₃ サイトに Ti 3d 電子が局在する Ti³⁺-Ti⁴⁺-Ti³⁺ の電荷秩序を示すと予測される。今後は理論計算や STEM-EELS による局所電子状態解析により、電荷 秩序状態のさらなる検証を進める予定である。

参考文献

- [1] S. Ohkoshi et al., Nat. Chem. 2, 539 (2010).
- [2] K. Yoshimatsu *et al.*, Cryst. Growth Des. 22, 703 (2022).
- [3] K. Yoshimatsu et al., PRM 8, 035002 (2024).

Photon Factory Activity Report 2024 #42 (2025)

成果

1. 吉松 公平、中尾 裕則、組頭 広志"λ 相 Ti₃O₅ における温度誘起相転移の観測"第85回応用物理学 会秋季学術講演会17p-D61-12 (2024).

* yoshimatsu.k.aa@m.titech.ac.jp