XAFS characterization of Cu and Ru-incorporated ceria (Cu_{0.18}Ru_{0.05}CeO_z) for alcohol ammoxidation

Chaoqi CHEN¹, Satoshi MURATSUGU*¹ and Mizuki TADA^{1,2}

¹ Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
² Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical

Science (IRCCS), Nagoya University, Furo-cho, Chikusa, Aichi 464-8602, Japan.

1 Introduction

A Cu and Ru-incorporated ceria (denoted as $(Cu_{0.18}Ru_{0.05}CeO_z)$ was prepared and its structures were characterized by XRD, TEM/STEM-EDS, XAFS, and XPS.^[1] Cu_{0.18}Ru_{0.05}CeO_z showed reversible redox performance at low temperatures (<423 K).^[1] We investigated the change in oxidation states of composed metal species by *in situ* Ce L_{III} -edge, Cu *K*-edge, and Ru *K*-edge XAFS with H₂/O₂ flow while increasing the temperature to comprehensively clarify the behavior of each metal species during the redox performance.^[1]

2 Experiment

Ce $L_{\rm III}$ -edge and Cu *K*-edge XAFS were measured in a transmission mode at the BL-9C station. Ionization chambers filled with pure N₂/He (30/70 v/v) and pure N₂/Ar (8.5/1.5 v/v) were used to monitor incident and transmitted X-rays for Ce $L_{\rm III}$ -edge, respectively. Ionization chambers filled with pure N₂ and pure N₂/Ar (7.5/2.5 v/v) were used to monitor incident and transmitted X-rays for Cu *K*-edge, respectively. Ru *K*-edge XAFS was measured in a transmission mode at the AR NW-10A station. Ionization chambers filled with pure Ar and pure Kr were used to monitor incident and transmitted X-rays for Ru *K*-edge, respectively.

In situ QXAFS measurements during H₂ reduction/O₂ oxidation were performed as follows. Cu_{0.18}Ru_{0.05}CeO_z was placed in an in situ temperature-controlled gas flow cell. After flushing with N₂ (100 sccm) for 10 min, the cell was heated to 303 K and kept for 5 min, and then QXAFS measurement was started. After 5 min, the gas was switched to $H_2 + N_2$ (50 + 50 sccm). After 5 min, the cell was heated to 473 K (2 K min⁻¹). After keeping the temperature at 473 K for 10 min, the gas was changed to N₂ (100 sccm), and the cell was cooled to room temperature. Then, the cell was heated again to 303 K and kept for 5 min, and the QXAFS measurement was started. After 5 min, the gas was switched to $O_2 + N_2$ (50 + 50 sccm). After 5 min, the cell was heated to 573 K (5 K min-¹). After keeping the temperature at 573 K for 1 h, the gas was changed to N₂ (100 sccm), and the cell was cooled to room temperature.

3 Results and Discussion

Figure 1(a-c) showed *in situ* Ru *K*-edge, Cu *K*-edge, and Ce L_{III} -edge XANES spectral changes of Cu_{0.18}Ru_{0.05}CeO_z during H₂ reduction. Figure 1(d) showed the oxidation

states changes of each metal species during H₂ reduction. It was found that Ru was initially reduced at 333 K, followed by Cu reduced at 353 K and finally Ce reduced at 373 K. The average oxidation states of Ru, Cu, and Ce were estimated as follows: Ru changed from + 4.37 to + 1.06, Cu changed from + 2.00 to + 0.30 and Ce changed from + 3.85 to + 3.62, respectively. The total oxidation states change of Ru, Cu and Ce were comparable to the net H₂ consumption by TPR measurements.^[1] After O₂ reoxidation, all the metal species were recovered to almost original values. These results revealed the behavior of all metal species in the reversible redox performance of $Cu_{0.18}Ru_{0.05}CeO_z$. $Cu_{0.18}Ru_{0.05}CeO_z$ showed high conversion of benzyl alcohol (95%) with high selectivity (95%) to produce benzonitrile in the ammoxidation of benzyl alcohol.^[1] The enhanced redox performance of $Cu_{0.18}Ru_{0.05}CeO_z$ also suggested that the reduced structure of $Cu_{0.18}Ru_{0.05}CeO_z$ was active for the ammoxidation.

Figure. 1 (reproduced from Ref. [1]): *In situ* (a) Ru *K*-edge XANES spectra (b) Cu *K*-edge XANES spectra, and (c) Ce L_{III} -edge XANES spectra of Cu_{0.18}Ru_{0.05}CeO_z during H₂ reduction. (d) The changes of the oxidation states for Ru, Cu and Ce during H₂ reduction.

References

- [1] C. Chen et al. Phys. Chem. Chem. Phys. 26, 17979-17990 (2024).
- * muratsugu.satoshi.a5@f.mail.nagoya-u.ac.jp