XAFS characterization of Pt-Gd alloy nanoparticles on hollow mesoporuous sphere carbon support for efficient electrochemical oxygen reduction reaction

Satoshi MURATSUGU*1, Takumi MORIYAMA1 and Mizuki TADA1,2

¹ Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
² Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical

Science (IRCCS), Nagoya University, Furo-cho, Chikusa, Aichi 464-8602, Japan.

1 Introduction

We prepared Pt₂Gd alloy nanoparticles with narrow size distribution by using Pt and Gd organometallic complexes as precursors and a hollow mesoporous carbon sphere (HMCS) as a support (denoted as Pt₂Gd/HMCS). The structure of Pt₂Gd alloy nanoparticles in Pt₂Gd/HMCS was characterized by XRD, TEM/HAADF-STEM-EDS, XAFS, and XPS, and electrochemical oxygen reduction reaction (ORR) performances of Pt₂Gd/HMCS was investigated.^[1]

2 Experiment

Pt $L_{\rm III}$ -edge and Gd $L_{\rm III}$ -edge XAFS of the as-prepared samples were measured in a transmission mode at the BL-9C and BL-12C stations. Ionization chambers filled with pure N₂/Ar (8.5/1.5 v/v) and pure Ar were used to monitor incident and transmitted X-rays for Pt $L_{\rm III}$ -edge, respectively. Ionization chambers filled with pure N₂ and pure N₂/Ar (7.5/2.5 v/v) were used to monitor incident and transmitted X-rays for Gd III-edge, respectively.

Pt L_{III} -edge XAFS of the sample after acceleration degradation test (ADT) was measured in fluorescence mode at the BL-9C station. Ionization chambers filled with pure N₂/Ar (8.5/1.5 v/v) and a 7-channel Ge solid-state detector were used to monitor the incident and fluorescent X-rays, respectively. Inelastically scattered X-rays were cut off using a Zn filter ($\mu t = 3$), the characteristic X-rays from the Zn filter were cut off using a solar slit, and the fluorescent X-rays from Pt (L_{α} line) were selected. The rotating disk electrode with sample after ADT was directly measured.

3 Results and Discussion

Figure 1(a) shows the Pt L_{III} -edge XANES spectrum of **Pt₂Gd/HMCS** and control samples. The white line intensity of the Pt L_{III} -edge XANES spectrum of **Pt₂Gd/HMCS** (Figure 1(a)) was similar to those of metallic Pt species in **Pt/HMCS** (prepared in a similar manner to **Pt₂Gd/HMCS** but without Pt precursor) and Pt foil, suggesting that Pt in **Pt₂Gd/HMCS** was metallic. The slight positive shift of the XANES spectrum of **Pt₂Gd/HMCS** supported the alloying of Pt with Gd.^[1]

Figure 1(b) shows the Pt L_{III} -edge EXAFS oscillation of **Pt₂Gd/HMCS** and control samples. The oscillation of **Pt₂Gd/HMCS** had a different period and smaller amplitude than that of **Pt/HMCS** and Pt foil. Figure 1(c) shows the Pt L_{III} -edge EXAFS Fourier transform of

Pt₂Gd/HMCS and control samples. The peak attributed to the Pt-Pt bond $(0.265 \pm 0.001 \text{ nm}, \text{ coordination number}$ (CN): 4.2 ± 0.2) was much smaller than the peak attributed to the Pt-Pt bond in Pt foil $(0.277 \pm 0.001 \text{ nm}, \text{CN}: 12)$. Together with the structural analyses of XRD, TEM/HAADF-STEM-EDS, and XPS, the formation of Pt₂Gd alloy nanoparticles with narrow size distribution were clarified.^[1]

Pt₂Gd/HMCS showed higher ORR activity and durability (from ADT) than **Pt/HMCS** and commercially available Pt/C catalyst.^[1] One of the reasons for high ORR performance was suggested to be the formation of Pt₂Gd core - Pt shell type nanoparticles as active species, as suggested from HAADF-STEM/EDS analyses of **Pt₂Gd/HMCS** after ADT. The Pt L_{III} -edge EXAFS oscillation of **Pt₂Gd/HMCS** after ADT became closer to that of Pt species as shown in Figure 1(d), supporting this observation.^[1]

Figure. 1 (reproduced from Ref. [1]): (a) Pt L_{III} -edge XANES spectra, (b) Pt L_{III} -edge EXAFS oscillations, and (c) Pt L_{III} -edge EXAFS Fourier transforms of as-prepared **Pt₂Gd/HMCS** and control samples. (d) Pt L_{III} -edge EXAFS oscillations of **Pt₂Gd/HMCS** (as prepared and after ADT) and control samples.

References

- T. Moriyama et al. J. Am. Chem. Soc. 147, 1262-1270 (2025).
- * muratsugu.satoshi.a5@f.mail.nagoya-u.ac.jp